
Pulse-Net: Dynamic Compression of Convolutional
Neural Networks

1st Browne
Insight-Centre

University College Cork
Cork, Ireland

david.browne@insight-centre.org

2nd Giering
UTRC

United Technologies Research Center
East Hartford Connecticut, U.S.A.

gierinmj@utrc.utc.com

3rd Prestwich
Insight-Centre

University College Cork
Cork, Ireland

steven.prestwich-centre.org

Abstract—Convolutional Neural Networks (CNNs) are used in
a range of computer vision tasks, with state-of-the-art CNNs
such as AlexNet and VGG16 constructed using a large number
of parameter and multiply-add operations (MACs). These tasks
require high computational power and high energy requirements
to run the CNNs, making them unsuitable for deployment on In-
ternet of Things devices. To overcome this issue and facilitate the
use of CNNs on these resource-constrained devices, compression
technology through pruning research has gained momentum and
is an important tool for improving performance during inference.
Our work focuses on pruning unwanted filters and nodes in all
layers of a network. The network is pruned iteratively during
training via a novel approach we call Pulse-Net, and a significant
number of filters/nodes are removed while ensuring any loss
in accuracy is within a predetermined range. The unpruned
network can be extracted from the original structure for the
inference stage. This novel method has an easy-to-set parameter
to control the trade-off between accuracy and compression. Pulse-
Net gives greater compression, while maintaining competitive ac-
curacy loss, than other reported methods like, efficient convnets,
ThiNet and Cross-Entropy Pruning. It also has better robustness
against adversarial attacks than other compression and pruning
techniques.

Index Terms—Deep Learning, Classification, Compression,
Image Recognition, IoT, Inference Efficiency

I. INTRODUCTION

Recent years have seen the explosion of increasingly deep
neural networks, which achieve start-of-the-art results in ar-
eas including computer vision. The rapid growth of deep
convolutional neural networks (CNNs) is due to hardware
developments in the form of powerful GPUs, software de-
velopments in the form of stochastic gradient descent and
new network architectures, and the public availability of large
labelled datasets such as the ImageNet classification tasks.

However, because deep CNNs rely heavily on powerful
GPUs and consume a great deal of memory, their practical
uses may be limited. AlexNet [14] has about 61 million
parameters and needs over 200 MB of storage, while VGG16
[24] has 138 million parameters requiring 500 MB. The more
parameters the model has, the more memory it consumes
and the more energy is needed during inference. This is
particularly important when these networks are deployed on
mobile devices, and memory consumption is the key resource

for usage on the cloud. Cost and power requirements can also
be important determining factors when considering introducing
CNNs for Internet of Things (IoT) applications. Inference
time can be just as important as accuracy for online image
recognition where thousands of images per second may require
analysis. We show that by compressing/pruning the network
we can greatly reduce the number of parameters, leading to a
significant reduction in the number of FLOPs, which is directly
associated to inference time.

As deep neural networks become deeper and wider, methods
to prune filters/nodes and compress the network structure have
gained interest. Most recent work in CNN compression is
focused on reducing the number and size of weights or pa-
rameters, but does not take into account the value of an entire
filter or node. According to Denil et al. [4] and Hinton et al.
[11], deep neural networks are known to be overparameterized,
which facilitates convergence to good local minima of the
loss function during training. After training, these redundant
parameters can be removed with little loss in accuracy. There
are two general approaches to compressing a network: during
training [2], [3], [13] or after training [1], [6]–[8], [30]. Our
proposal, called Pulse-Net, falls in the first group.

We demonstrate the robustness, efficiency and strength of
our proposed approach on a range of computer vision tasks
of varying degrees of difficulty (CIFAR-10, CIFAR100, Tiny-
ImageNet), using well-known CNN structures of different
depths and widths. We compress and evaluate these structures,
showing how Pulse-Net can significantly reduce the model
size, runtime and energy consumption, while approximately
maintaining accuracy. The advantages of these compressed
models are that they are easier to run on embedded IoT de-
vices, need less energy for computation and use less bandwidth
for updating. Adversarial images are tested on both the original
and the compressed networks, demonstrating the effects of
adversarial attacks on pruned networks.

The main contributions of this research are as follows.
Firstly, we introduce a novel approach called Pulse-Net for
pruning filters and nodes during training. Secondly, we demon-
strate that this achieves close to state-of-the-art classification
accuracy on the well-known datasets CIFAR-10, CIFAR100
and Tiny-ImageNet while using only a fraction of the pa-
rameters. Thirdly, we show how the compressed network can978-1-5386-4980-0/19/$31.00 ©2019 IEEE

346

be extracted and loaded onto a new narrower CNN for the
inference phase, and that simulations of its usage on an IoT
device shows substantial improvements in computational speed
and energy efficiency. Finally, robustness under adversarial
attack of the compressed network created by Pulse-Net will
be demonstrated, showing the compressed network to be just
as accurate as the original network, and in some cases to have
better accuracy.

This rest of this paper is organised as follows. Section
2 discusses the related work on filter pruning and network
compression. We explain our proposed method Pulse-Net in
Section 3, with the descriptions of the datasets and networks
used in Section 4, along with the experimental design in
Section 5. The results are given in Section 5, as well as their
evaluation and discussions. Finally, we conclude the paper in
Section 6.

II. RELATED WORK

Research on the compression of deep neural networks has
gained pace in the last couple of years, to enable these state-
of-the-art networks to run on Internet of Things devices, and
to use less bandwidth for updating. As already stated, CNNs
are generally over-parameterized, so pruning them helps to
improve generalization, as well as achieving compression and
decreasing energy consumption with little loss in accuracy.
Molchanov et al. [19], following the same idea, uses the
Dropout regularization method to help decide which weights
can be pruned.

Han et al. [7] and Guo et al. [6] trained a network then
pruned redundant weights, resulting in a sparse network.
To regain accuracy this sparse network was retrained. A
disadvantage of this method is that additional libraries are
required to utilize sparse networks. Also, though this can
reduce the size of a network, it does not neccessarily make
the network more efficient or faster at inference time. This
is due to the structure of the networks studied, AlexNet [14]
and VGG16 [24], in which the number of parameters in the
fully connected layers dominates the number of parameters in
the convolutional layers. Most of the computation time during
inference is spent in the convolutional layers, so removing
these redundant weights result in little improvement in infer-
ence time. The recently developed Highway Networks [28] and
ResNets [10] counter this by removing the fully connected
layers, but this does not help with computation time which
greatly increases as networks become deeper. Li et al. [16]
proposed a filter pruning method which is more hardware-
compatible: we follow this line, but we also prune nodes in
the fully-connected layers to achieve greater compression.

Han et al. [8] extended [7] by using quantization and Huff-
man coding in conjunction with network pruning, an approach
called Deep Compression. To show its application value they
released a hardware accelerator called Efficient Inference En-
gine where the compressed model runs more energy-efficiently
[9]. Polyak and Wolf [20] pruned their network based on low-
level channels, while Sun et al. [27] learned a sparse network
which reduced the number of parameters by 88%. The ideas

of Han et al. [8], Courbariaux et al. [3] and Rastegari et al.
[21] work could be applied to our compressed networks to
further reduce their size.

Some recent state-of-the-art CNN architectures reduce the
network parameters by reducing filter size. The VGG network
[24] uses 3× 3 filters, while googleNet [28] and Network-in-
Network [17] both use 1×1 filters in some layers. Other recent
research in CNN structure shows that, although adding layers
increases accuracy, it is possible to skip layers in the network,
resulting in further improvement in accuracy [10] [25].

Hinton et al. [12] used the outputs from a large pre-
trained teacher network to train a smaller student network,
with similar accuracy but faster computation. A drawback of
this approach is that it requires a pre-trained network, and
that further training operations are carried out on the large
teacher network. Both Romero et al. [22] and Luo et al. [18]
expanded on this idea, the former using not only the outputs
but also representations learned by the teacher network to
train a narrower and deeper student network. [18] used the
weights learned by the teacher at the last hidden layer before
the softmax layer, reasoning that these weights are highly
correlated to the prediction classes.

Yang et al. [31] introduced energy consumption as the
metric to decide which layers to prune. This work shows that
the energy a model consumes has two components: (1) energy
used to carry out the MAC operations, and (2) energy needed
for memory accesses. We report how Pulse-Net can effectively
reduce (1) by reducing the number of MAC calculations, and
reduce (2) by shrinking the network structure.

Both Wang et al. [29] and Ye et al. [32] showed that
compressed CNNs can be vulnerable to adversarial attack. This
is shown by testing adversarial images created using the Fast
Gradient Sign Method, on both the original network and the
network compressed by 60%. The accuracy of both networks
were greatly reduced and the difference in accuracy between
them was over 13%. This showed that their compressed
network was more vunerable to adversarial attack. We will
show that Pulse-Net can reduce the network 95.63% while
maintaining similar accuracy during adversial attacks, in some
cases even beating the original network.

III. PULSE-NET

In this section we describe Pulse-Net, our network pruning
technique, and show the pseudo code behind the idea.

Pulse-Net, so-called due to the pulsing nature of the number
actively updated model parameters in time during training,
is the main algorithm of our pruning method. It prunes the
network iteratively, but also allows the network to expand
when the loss of accuracy is too great. To check when the
network converged, a moving average with window size 10
was used to smooth out the validation loss curve. The learning
rate list was [0.1, 0.01, 0.001, 0.0001, 0.00001] (lr-list for short
in Algorithm 1). This compression and decompression of the
network allows Pulse-Net to prune the network intelligently,
and approach a compressed state more gently. This idea
follows the use of cooling schedules in Simulated Annealing,

347

a well-known optimization algorithm with good convergence
properties. It allows Pulse-Net to explore ambitious pruning
but focus on pure improvement when this fails. Another
optimization algorithm that Pulse-Net takes properties from
is NeuroEvolution of Augmenting Topologies (NEAT) [26] in
which neurons can be added as necessary to regain accuracy.
The full training process of Pulse-Nets varies depending on
the compression rate achieved, but on average takes 2–5 times
longer than training a model without compression. But once
the model is compressed, the inference runtime is far more
efficient than an uncompressioned model.

Once the network is trained, all its layers are reduced by
the same percentage. This ensures that the network is pruned
more quickly, by pruning both the convolutional and fully-
connected layers together. The network is fine-tuned until it
stabilises, normally only requiring a few loops of the training
data, then the procedure is repeated until set break-points are
met or the loss in accuracy is too great.in each layer, the
filters/nodes which have the lowest average value are removed
first. During the training stage, a binary mask matrix is used to
simulate the removal of the corresponding filters/nodes from
these redundant feature maps. Once Pulse-Net has finished
the reduction stage, the remaining relevant filters/nodes are
extracted and reloaded onto a compressed network for the
inference stage.

We now introduce some notation. Let α be the rate of
reduction, and set it to 10%. This is the percentage all layers
in the network that will be pruned by until an accuracy limit is
breached. Let λ be the maximum loss in accuracy which allows
the network to continue pruning at the current α rate. This is
the parameter that controls how much a network is willing to
sacrifice accuracy for greater compression. For all experiments
in this work we set it to 2%, which gave high compression
with very little accuracy loss. Let β be the stopping citerion:
we set it to 2 nodes/filters of the widest current layer of the
network. This means that if α prunes less than β in this layer,
Pulse-Net stops trying to further compress the network. The
pseudocode for Pulse-Net is shown in Algorithm 1.

IV. DATASETS AND NETWORKS

We now describe the datasets and network architectures
used in our experiments.

A. Datasets

We used 3 well-known datasets to demonstrate the effective-
ness of Pulse-Net: CIFAR10 [15], CIFAR100 [15] and Tiny-
ImageNet. Tiny-ImageNet is a subset of the ILSVRC2014
dataset containing 200 classes created by Lucas Hansen at
Stanford University [23]. The training dataset has 500 images
per class, while the testing dataset has 50 images per class.
Each image is 64 × 64 pixels and is an RBG color image.
Both the CIFAR10 and CIFAR100 datasets are 32× 32 pixels
and are also RBG color images. CIFAR10 has 10 classes with
5000 images in each class in the training data and 1000 images
per class for the testing dataset. CIFAR100 is made up of 100

Algorithm 1 Pulse-Net
1: Initialize lr-step = 0
2: Initialize lr-rate = lr-list[lr-step]
3: Train Network until validation loss convergence
4: X = Calcul(10-ma)
5: Calculate validation acc and store as best acc
6: Repeat until # Filters/Nodes of max layer removed < β:
7: While |validation acc− Best acc| < λ:
8: Remove α min[Filters] in all layers of Network
9: Fine-Tune Network till validation loss converges

10: X = Calcul(10−ma)
11: Calculate validation acc
12: If validation acc > best acc:
13: best acc ← validation acc
14: Else:
15: If lr-step < length (lr-list)
16: α = 0.5(α)
17: lr-step = lr-step +1
18: Else:
19: Halt

classes, each class in the training datset has 500 examples,
while each class in the testing dataset has 100 examples.

Fig. 1. The AlexNet architecture used for experiments

Fig. 2. The VGG16 architecture used for experiments

B. AlexNet

A slightly altered version of AlexNet was used for this work,
as shown in figure 1. The network had 5 convolutional layers
followed by 3 fully-connected layers with the last layer being
the number of classes in the dataset. The activation function
used in all layers except for the last layer, where softmax was
used, was the recified linear unit (ReLu). Batch normalization
(BN) was also used in all layers except the final layer.

C. VGG16

The VGG16 Network had 13 convolutional layers connected
to 3 fully-connected layers with the last layer being the number
of classes in the dataset, as shown in figure 2. Again the
activation function used in all layers except for the last layer,
where softmax was used, was ReLu; and BN was used in all
layers expect the final layer.

348

D. TensorFlow 2 convolutional layer Network

The TensorFlow convolutional Network had 2 convolutional
layers both with 64 filters, with a kernel size of 5 in both
layers. Max pooling was used after both convolutional layers.
Finally, the convolutional layers were connected to 3 fully-
connected layers of sizes 384, 192 and the number of classes
in the dataset. As above, the activation function used in all
layers except for the last layer, where softmax was used, was
ReLu; and BN was used in all layers expect the final layer.

V. RESULTS

This section is broken down into 4 subsections: an outline
of the experimental design, followed by a subsection for each
dataset. In each subsection we will compare the accuracy,
multiply-add operations (MACs), storage, computational speed
and energy efficency of the compresseed and uncompressed
networks. Note that an accuracy loss threshold of 2% was
enforced during the pruning, meaning the network was allowed
to decrease in accuracy by this amount during training to prune
the network to a highly compressed state. The results in this
section of the accuracy and performance of each test is carried
out on a single image put through the network, using the
experimental design described above.

A. Experiment Design

All training and testing was carried out on the NVIDIA
GeForce GTX 1080 graphics card, which has 8GB of memory.
The OS used was Ubuntu 16.04.3, Python version was 3.5.2
and TensorFlow version was 1.4.A mini batch size of 128 was
used on all experiments, and to create the validation dataset,
the last 10% was used. The Stochastic Gradient Descent (SGD)
optimizer was used during the training phases with a repeated
step learning rate method, explained above in section 3.2.

To check the robustness of the networks under adversarial
attack, we also test them on adversarial images constructed
using the Fast Gradient Sign Method [5]. We created adver-
sarial images of CIFAR10, CIFAR100 and tiny-Imagenet using
separately trained models of the TensorFlow network, AlexNet
and VGG16, dedicated to creating only these adversarial test
sets. The full validation sets of these datasets were used as
the adversarial test sets. To avoid confusion we name these
adversarial networks Adv-TensorFlow, Adv-AlexNet and Adv-
VGG16. We compute statistics showing the noise required
to create the adversarial images needing the most and least
amount of noise for each model per dataset. These statistics
include mean square error, entropy and structural similarity,
which is used to compare images for likeness. Standard statis-
tics such as interquartile range, mean and standard deviation
show the variation of noise required for the adversarial effect,
while the range and outliers show the max and min values of
noise added, along with the extreme values.

B. CIFAR10

It can be seen from table I that Pulse-Net was able to reduce
AlexNet by 95.63% and VGGG16 by 87.85%, sacrificing
only 2% and 0.9% accuracy respectively. The TensorFlow

model was pruned by 76.25% with a decrease in accuracy of
3.6%. It is worth remembering that this model was designed
specifically to demonstrate image recognition tasks using the
CIFAR datasets, and was already an optimally sized network.
The relevant filters and nodes of these pruned networks were
extracted and reloaded onto a network suited to their size.
These reduced networks were then tested for efficiency, dis-
playing substantial savings in storage and up to 50% reduction
in inference time, with a saving of between 14% and 65% in
energy required for inference.

These extracted networks pruned by Pulse-Net were anal-
ysed for robustness against adversarial attacks. The statistics
from table II describe the noise added to the images that
required both the maximum and minimum amount of variation
needed to create the adversarial images to fool the network.
The images where most noise was added were deer (2995),
airplane (7835) and frog (1578), while the images requiring
the least amount were airplane (2473), ship (3140) and car
(6010) on the networks Adv-AlexNet, Adv-TensorFlow and
Adv-VGG16, respectively. It can be seen that there was a great
difference between the amount of noise required between cre-
ating the max and min adversarial images. This is highlighted
in the results ofthe MSE statistic and the R-Squared values,
along with the noise range values.

Table III shows accuracy results for the adversarial attacks
using the CIFAR10 dataset. Taking into account the accuracy
of the networks on the original images, and the relative
difference between the pruned and unprune models, the table
shows that out of the 9 attacks, 6 of Pulse-Net’s pruned models
were more robust than the original models. This illustrates
that for the CIFAR10 dataset Pulse-Net created networks were
not only more efficient but also over 66% more robust to
adversarial attacks.

C. CIFAR100

It can be seen from table IV that Pulse-Net was able to
reduce AlexNet by 85.95% and VGG16 by 87.6%, with only
a loss in accuracy of 2.3% and 1.1% respectively. The Tensor-
Flow model was pruned by 65.57% with a decrease in accu-
racy of 4.5%. Again, this network was already optimised. After
extraction these reduced networks were tested for efficiency,
and like the CIFAR10 results showed great improvement in
storage, reducing the inference times by between 0.6% and
48.33%, and with a saving of energy between 9% and 67%.

Following the same testing method as for the CIFAR10
dataset, these extracted networks pruned by Pulse-Net were
analysed for robustness against adversarial attacks. The statis-
tics for the CIFAR100 dataset follow a very similar pattern to
those for CIFAR10, and therfore due to page restrictions are
omitted, but available on request.

Table V shows the accuracy results from the adversarial at-
tacks using the CIFAR100 dataset. Again, taking into account
the accuracy of the networks on the original images, and the
relative difference between the pruned and unprune models,
the table shows that out of the 9 attacks, 8 of Pulse-Net’s
pruned models were more robust than the original models. This

349

Network Accuracy (%) Parameters MACs (M) Storage (MB) Speed (ms) Energy (mJ)
AlexNet 91.16 5.83 X 107 874 222.5 4.14 0.95

Compressed 2% 95.63% 95.31% 95.63% 50.72% 65.26%
TensorFlow 85.36 1.07 X 106 18.4 4.08 1.69 0.39
Compressed 3.6% 76.25% 72.83% 76.25% 2.95% 13.59%

VGG16 90.87 3.36 X 107 287.2 128.36 6.32 0.84
Compressed 0.9% 87.85% 87.89% 87.85% 47.94% 59.52%

TABLE I
PERFORMANCE AND ACCURACY OF TENSORFLOW MODEL, ALEXNET AND VGG16 USING CIFAR10 DATASET

Adv-AlexNet Adv-TensorFlow Adv-VGG16
Statistic Maximum Minimum Maximum Minimum Maximum Minimum

Noise range [-72, 161] [-12, 15] [-82, 82] [-12, 13] [-158, 151] [-14, 12]
IQR 11 0 2 0 14 2

Mean 0.23 0.009 -0.18 -0.004 0.05 0.04
STD 21.45 2.03 11.96 2.1 18.46 2.5

Outliers 655 1420 717 1361 296 250
MSE 1381.04 13.32 428.98 13.29 1021.94 18.71

Structural Similarity 0.27 0.98 0.72 0.98 0.8 0.98
Entropy 5.86 2.52 3.83 2.5 5.83 3.12

TABLE II
STATISTICS OF THE CIFAR10 ADVERSARIAL IMAGES THAT REQUIRED THE MAXIMUM AND MINIMUM AMOUNT OF NOISE ADDED

Adv-AlexNet Adv-TensorFlow Adv-VGG16
Network Original (%) Compressed (%) Original (%) Compressed (%) Original (%) Compressed (%)
AlexNet 20.08 20.74 31.61 20.51 42.69 35.11

TensorFlow 37.90 39.49 9.89 9.38 45.94 44.21
VGG16 40.92 43.68 37.54 36.06 29.26 29.34

TABLE III
ACCURACY RESULTS OF CIFAR10 ADVERSARIAL IMAGES CREATED BY TENSORFLOW MODEL, ALEXNET AND VGG16

Network Accuracy (%) Parameters MACs (M) Storage (MB) Speed (ms) Energy (mJ)
AlexNet 69.77 5.87 X 107 874.5 223.9 4.16 1.04

Compressed 2.31% 85.95% 85.76% 85.95% 46.15% 67.46%
TensorFlow 58.05 1.09 X 106 18.5 4.14 1.68 0.40
Compressed 4.5% 65.57% 63.03% 65.57% 0.6% 8.79%

VGG16 64.2 3.4 X 107 287.6 129.77 6.29 0.83
Compressed 1.14% 87.6% 87.87% 87.6% 48.33% 57.52%

TABLE IV
PERFORMANCE AND ACCURACY OF TENSORFLOW MODEL, ALEXNET AND VGG16 USING CIFAR100 DATASET

illustrates that for the CIFAR100 dataset Pulse-Net created
networks were not only more efficient but were also nearly
90% more robust under adversarial attacks.

D. Tiny-ImageNet
Finally, looking at table VI, Pulse-Net was able to reduce

AlexNet by 80.79% and VGG16 by 83.15%, with only a loss
in accuracy of 3.75% and 2% respectively. The TensorFlow
model was pruned by 74.25% with a decrease in accuracy of
2.91%. The reduced extracted networks were tested for effi-
cency, and like both CIFAR results showed great improvement
in storage, reduced the inference times by between 15% and
57%, and a saving of energy between 13% and 65%.

Following the same testing method as the CIFAR datasets,
these extracted networks pruned by Pulse-Net were analysed
for robustness against adversarial attacks. The statistics for the
Tiny-ImageNet dataset follow a very similar pattern to those
of CIFAR10, and therfore due to page restrictions are omitted,
but available on request.

Table VII shows the accuracy results from the adversarial
attacks using the Tiny-ImageNet dataset. Again, taking into

account the accuracy of the networks on the original images,
and the relative difference between the pruned and unprune
models, the table shows that out of the 9 attacks, 6 of
Pulse-Net’s pruned models were more robust than the original
models. Again, displaying that for the Tiny-ImageNet dataset
Pulse-Net created networks were not only more efficient but
were also over 66% more robust to adversarial attacks.

VI. CONCLUSION

In this paper, we proposed a novel deep CNN pruning
method called Pulse-Net, which compresses a network during
training to create a more efficient model for inference. The pro-
posed compression method shows significant improvements
in storage, inference timings and energy efficiency, as well
as greater robustness under adversarial attack, ideal for IoT
devices.

In future work we would like to explore different metrics for
pruning, as well as removing filters in other types of networks
like ResNet. In addition, we believe research into pruning the
depth of networks as well as the width, using Pulse-Net, would
be an interesting expansion of the work.

350

Adv-AlexNet Adv-TensorFlow Adv-VGG16
Network Original (%) Compressed (%) Original (%) Compressed (%) Original (%) Compressed (%)
AlexNet 14.90 17.25 18.48 15.84 32.38 30.10

TensorFlow 26.47 26.03 4.14 4.28 26.92 25.22
VGG16 29.35 30.71 20.56 20.13 19.23 22.29

TABLE V
ACCURACY RESULTS OF CIFAR100 ADVERSARIAL IMAGES CREATED BY TENSORFLOW MODEL, ALEXNET AND VGG16

Network Accuracy (%) Parameters MACs (M) Storage (MB) Speed (ms) Energy (mJ)
AlexNet 54.8 7.27 X 107 1266.2 277.47 8.68 1.32

Compressed 3.75% 80.79% 79.20% 80.79% 56.57% 65.15%
TensorFlow 40.45 5.04 X 106 100 19.22 2.1 0.31
Compressed 2.91% 74.25% 71.26% 74.25% 15.24% 12.9%

VGG16 56.05 4.07 X 107 1010.8 155.33 6.67 0.86
Compressed 2% 83.15% 83.81% 83.15% 44.68% 61.63%

TABLE VI
PERFORMANCE AND ACCURACY OF TENSORFLOW MODEL, ALEXNET AND VGG16 USING TINY-IMAGENET DATASET

Adv-AlexNet Adv-TensorFlow Adv-VGG16
Network Original Compressed Original Compressed Original Compressed
AlexNet 40.93 36.99 39.15 33.77 47.29 42.49

TensorFlow 32.79 30.88 16.02 15.95 34.86 32.61
VGG16 46.89 45.34 43.16 41.77 30.49 35.54

TABLE VII
ACCURACY RESULTS OF TINY-IMAGENET ADVERSARIAL IMAGES CREATED BY TENSORFLOW MODEL, ALEXNET AND VGG16

ACKNOWLEDGMENT

This work was supported in part by Science Foundation
Ireland (SFI) under Grant Number SFI/12/RC/2289, and also
in part by United Technologies Research Center.

REFERENCES

[1] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, Y. Chen. ”Com-
pressing neural networks with the hashing tr, ” In ICML, 2015.

[2] M. Courbariaux, Y. Bengio, J.P. David. ”Binaryconnect: training deep
neural networks with binary weights during propagations,” In NIPS,
2015, pp. 3105-–3113.

[3] M. Courbariaux, I. Hubara, D.l Soudry, R. El-Yaniv, Y. Bengio.”
Binarized neural networks: Training neural networks with weights and
activations constrained to +1 or -1,” arXiv:1602.02830, 2016.

[4] M. Denil, B. Shakibi, L. Dinh,M. A. Ranzato, N. de Freitas, ”Predict-
ing parameters in deep learning,” In Advances in Neural Information
Processing Systems, 2014. pp. 1269-–1277.

[5] I. J, Goodfellow, J. Shlens, and C. Szegedy. ”Deep residual learning for
image recognition,” arXiv:1512.03385, 2015.

[6] Y. Guo, A. Yao, and Y. Chen.” Dynamic network surgery for efficient
dnns,” In NIPS, 2016, pp. 1379-–1387.

[7] S. Han, J. Pool, J. Tran, W. Dally.”Learning both weights and connec-
tions for efficient neural networks,”In NIPS, 2015.

[8] S. Han, H. Mao, W. Dally.”Deep compression: Compressing DNNs with
pruning,trained quantization and huffman coding,”arxiv:1510.00149,
2015.

[9] S. Han, Xi. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, W. J. Dally.
”Eie: Efficient inference engine on compressed deep neural network,”
International Symposium on Computer Architecture (ISCA), 2016.

[10] K. He, X. Zhang, S. Ren, J. Sun. ”Deep residual learning for image
recognition,” arXiv:1512.03385, 2015.

[11] G. E. Hinton, N.Srivastava, A. Krizhevsky, I. Sutskever, R. R. Salakhut-
dinov. ”Improving neural networks by preventing co-adaptation of
feature detectors,” arXiv:1207.0580, 2012.

[12] G. Hinton, O. Vinyals, J. Dean. ”Distilling the knowledge in a neural
network,” In NIPS Workshop, 2014.

[13] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, K.
Keutzer. ”Squeezenet: Alexnet-level accuracy with 50x fewer parameters
and¡ 1mb model size, ” arXiv:1602.07360, 2016.

[14] A. Krizhevsky, I. Sutskever, G. E. Hinton. ”Imagenet classification with
deep convolutional neural network,” In NIPS, 2012, pp. 1097-–1105.

[15] A. Krizhevsky, G. E. Hinton.” Learning multiple layers of features
from tiny images,” Master’s thesis, Department of Computer Science,
University of Toronto, 2009.

[16] H. Li, A. Kadav, I. Durdanovic, H. Samet, H.P. Graf. ”Pruning Filters
for Efficient ConvNets,” arXiv:1608.08710, 2016.

[17] M. Lin, Q. Chen, S. Yan. ”Network in network,” arXiv:1312.4400, 2013.
[18] P. Luo, Z. Zhu, Z. Liu et al, ”Face model compression by distilling

knowledge from neurons,” AAAI, 2016.
[19] D. Molchanov, A. Ashukha, D. Vetrov. ”Variational dropout sparsifies

deep neural networks,” arXiv:1701.05369, 2017.
[20] A. Polyak, L. Wolf. ”Channel-level acceleration of deep face represen-

tations,” IEEE, 2015.
[21] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi. ”XNOR-Net: Ima-

geNet Classification Using Binary Convolutional Neural Networks,” In
ECCV, 2016.

[22] A. Romero, N. Ballas, Y. Bengio et al. ”Fitnets: Hints for thin deep
nets,” In ICLR, 2015.

[23] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Huang, A. Karpathy, A. Khosla, M Bernstein, A.C. Berg. ”Imagenet
large scale visual recognition challenge,” International Journal of Com-
puter Vision, 115(3) 2015, pp. 211–52.

[24] K. Simonyan, A. Zisserman.” Very deep convolutional networks for
large-scale image recognition,” In ICLR, 2015, pp. 1-–14.

[25] R. K. Srivastava, K. Greff, J. Schmidhuber. ”Inception-v4, inception-
resnet and the impact of residual connections on learning,”
arXiv:1602.07261, 2016.

[26] K. O. Stanley, R. Miikkulainen. ”Evolving Neural Networks Through
Augmenting Topologies,” Evolutionary Computation, 10(2) 2002, pp.
99–127.

[27] Y. Sun, X. Wang, X. Tang. ”Sparsifying neural network connections for
face recognition,” IEEE CVPR, 2016.

[28] C. Szegedy, S. Ioffe, V. Vanhoucke. ”Highway networks,” In ICML Deep
Learning Workshop, 2015.

[29] L. Wang, G. W. Ding, R. Huang, Y. Cao, C. Yanshuai, Y. Lui. ”
Adversarial Robustness of Pruned Neural Networks,” In ICLR, 2018.

[30] W. Wen, C. Wu, Y. Wang, Y. Chen, H. Li. ”Learning structured sparsity
in deep neural networks,” In Advances In Neural Information Processing
Systems, 2016, pp. 2074-–2082.

[31] T. J. Yang, Y. H. Chen, V. Szei.”Designing energy-efficient convolutional
neural networks using energy-aware pruning,”arXiv:1611.05128, 2016.

[32] Y. Shaokai, S. Wang, X. Wang, B. Yuan, W. Wen, X. Lin. ” Defending
DNN Adversarial Attacks with Pruning and Logits Augmentation,” In
ICLR Workshop, 2018.

351

