
Enabling Plug&Play Cyber-Physical Systems
Using Knowledge-Driven OPC UA Discovery

Václav Jirkovský, Petr Kadera
Czech Institute of Informatics, Robotics, and Cybernetics

Czech Technical University in Prague
Prague, Czech Republic

Email: {vaclav.jirkovsky, petr.kadera}@cvut.cz

Marek Obitko
Rockwell Automation R&D Center

Argentinska 1610/4
Prague, Czech Republic

Email: mobitko@ra.rockwell.com

Abstract—Industrial automation domain is changing rapidly
in recent years. It is very important in the involvement of
technologies such as Cyber-Physical Systems. They are based on
interoperable devices. On the other hand, it is difficult to find a
suitable format and mechanism for successful communication of
devices. One of the important requirements is to find a specific
device as a demanded counterpart for communication. In this
paper, we will show that the integration of OPC UA standard
and Semantic Web technologies provides an interesting solution.

Index Terms—Cyber-Physical System, Ontology, Discovery,
OPC UA, Industrial Internet of Things

I. INTRODUCTION

The industrial automation domain has changed in recent
years. The changes are labeled as the industrial revolutions.
The last one is the 4th industrial revolution well-known as
Industry 4.0. Industry 4.0 is based mainly on digitization and
virtualization.

Furthermore, Internet of Things (IoT) [1] is one of the
next cornerstones of Industry 4.0. IoT is one of the Cyber-
Physical Systems (CPSs) variants with a typical purpose and
architecture — a set of interoperable devices connected via a
suitable way to control a given physical process or processes.

The important obstacle for full adoption of IoT as well as
CPS(s) is communication among devices. Concerning complex
analytic tasks, it is difficult to find the desired device using
available standards. In this paper, we will show that the
integration of CPS and Semantic Web Technologies (RDF1

and OWL2) may provide the required functionality.
The paper is organized as follows: first, we provide a general

overview of Cyber-Physical Systems and OPC UA standard
with respect to OPC UA discovery. Then, we introduce the
developed prototype named Semantic Big Data Historian
together with Plug&Play concept. Next, we introduce an
extension of OPC UA discovery functionality using Cyber-
physical system Ontology for Component Integration. Finally,
we describe details of the semantic matchmaking of devices.

This research has been supported by Rockwell Automation Laboratory for
Distributed Intelligent Control (RA-DIC) and by institutional resources for
research by the Czech Technical University in Prague, Czech Republic.

1https://www.w3.org/RDF/
2https://www.w3.org/OWL/

II. STATE OF THE ART

This paper will introduce a semantic extension of OPC UA
discovery for Cyber-Physical System. Cyber-Physical Systems
and OPC UA are described in the following paragraphs.

A. Cyber-Physical Systems

Around 2006, the term “Cyber-Physical System” (CPS) was
coined by Hellen Gill at the National Science Foundation
(U.S.) to describe the integration of physical and computa-
tional processes [2].

In general, CPSs may be considered as the outcome of the
long-standing evolution which was triggered by the creation
of the first computer. Computers were initially invented to
facilitate and perform a computation. The evolution from a tool
for computation to a complex system integrating computing,
communication, and control technologies, was enabled by
many essential inventions which made possible purposes and
utilization of the system wider.

The basic concept of CPS architecture consists of three main
parts — a cyber part, a physical part, and a network:

• The cyber part represents a computing core where physi-
cal process information is transformed into a a model of
a software system and corresponding rules establishing
dependencies and relationships among software model
entities together with control algorithms.

• The physical part represents a controlled object. This part
involves physical processes and physical objects which
are linked according to the given process.

• The network represents a communication medium be-
tween a cyber and a physical part.

B. OPC UA

OPC UA [3] provides means for platform independent,
versatile, and robust client-server communication. It replaces
the old OPC Classic protocol that was built upon Microsoft’s
DCOM (Distributed Component Object Model) technology
with a platform independent approach. There are not only
technological differences but also conceptual changes enabling
smoother vertical and horizontal integration. It defines a means
for scalable and secure industrial solutions.

A key feature of OPC UA is its capability to find available
data sources. This feature is reffered as Discovery Service.978-1-5386-4980-0/19/$31.00 ©2019 IEEE

149

The discovery process is related either to a single host (Local
Discovery) or to a network connecting multiple hosts (Global
Discovery).

Discovery services are provided by Discovery Servers
(DSs). DSs enable OPC UA servers to register. Once a client
sends a ”Finds Servers” request the Local Discovery Server
(LDS) responds with a list of registered servers. Each server
is described by a set of attributes including:

• Application Uri: ID of the server instance
• Application name: Human readable name for the server
• ProductUri: ID of the server product
• DiscoveryUrls: The available URLs of the server that

allow calling GetEndpoints without requiring a secure
connection

The client uses these pieces of information to select which
UA servers are of its interest. OPC UA does not provide any
standardization of this process. The approach proposed in this
paper aims at this gap. It uses Application Uri for matching
a specific data source represented by an OPC UA server and
the ontology managing data within the Semantic Big Data
Historian (SBDH). Thus, semantic search can be used to
effectively look up a particular sensor and at the same time
use standard OPC UA services to access the corresponding
OPC UA server and exchange data.

III. PLUG&PLAY CONCEPT REALIZATION
FOR SEMANTIC BIG DATA HISTORIAN

The Semantic Big Data Historian was proposed and proto-
type implemented due to increasing demands for facilitating
flexible manufacturing. The core functionality, as well as
the main advantage of the historian, is the employment of
Semantic Web technologies (more precisely an ontology in
OWL3) for explicit definition of knowledge. Thus, specific re-
quirements for a historian architecture stem from a utilization
of the ontology. Furthermore, the architecture is influenced by
a historian target usage, i.e., gathering data and information
from a shop floor and other involved systems as well as
controlling a shop floor by appropriate feedback. Thus, the
architecture has to be very flexible to process all required data
and robust to provide a highly reliable solution.

Frameworks employed in SBDH have changed several times
according to changing requirements and available software.
The current implementation exploits Apache Spark4 for coping
with data streams and big data management and Apache
Cassandra5 for data storage. SBDH architecture consists of
four layers and a concept of the overall system is to provide
a modular solution which may be adapted according to given
needs and requirements for software. The following listing
provides the description of the four SBDH architecture layers:

• Data acquisition and control layer — this layer is re-
sponsible for acquisition of data from relevant sources
(e.g., sensors, users via a user interface, and any relevant

3Web Ontology Language - https://www.w3.org/OWL/
4https://spark.apache.org/
5http://cassandra.apache.org/

software from higher levels such as MES/ERP) and
providing a feedback to control a given process (e.g.,
controlling an actuator, call relevant services of 3rd party
system, etc.). The preferred way for communication is
using previously introduced OPC UA. Consuming of
data streams is solved using Spark Streaming Custom
Receivers6.

• Transformation layer — a transformation to a form of
RDF triples according to Cyber-physical system Ontology
for Component Integration (COCI) [4]. A very important
responsibility of the transformation layer is to solve se-
mantic heterogeneity and repair damaged data if possible.

• Data storage layer — transformed data in the form of
RDF triples are stored in a triple-store in this layer. The
storage respects nature of prevalent part of data, i.e.,
measurements from sensors. In general, two different file
models are used in SBDH to provide more homogeneous
data distribution across files in Cassandra — “vertical
partitioning” model for data which are not time series
(triples are partitioned according to a predicate of the
triple) and “hybrid SBDH model” for storage of time se-
ries (triples are partitioned according to a triple predicate
and a given sensor). More detailed description is available
in [5]. It is obvious this layer is not only responsible for
simple data storage but is also responsible for conducting
transformations of triples to a corresponding file model.

• Analytic layer — the last layer provides a means how
to access data stored in the triple-store with the help of
SPARQL7 and how to implement analytic tasks. Apache
Spark MLlib8 (library with implemented distributed ma-
chine learning algorithms) for a solution of analytic tasks.

The overall architecture is shown in the Fig. 1 and more
details may be found in [6].

A. Plug&Play Concept
An interesting feature of SBDH resulting from the utiliza-

tion of Semantic Web technologies for knowledge model is
the feature named “Plug&Play concept”. It benefits from the
explicit specification of knowledge. Every device connecting
to SBDH has a semantic annotation stored in a string property
of OPC UA information model. This semantic annotation
consists of triples identifying a device against COCI concepts.
Furthermore, if a user wants to connect a previously unknown
device then the semantic annotation property may provide
definition of the device (including not only type of device
but also other related properties and capabilities such as
sampling rate, range, etc.) to extend ontology definition if more
general concepts from COCI (e.g., the concept named “sensing
device”) are respected.

Furthermore, Plug&Play devices may be directly employed
in analytic tasks or applications connected to SBDH without
any additional configuration or changing algorithms. The di-
rect employment of devices is achievable in the cases when

6https://spark.apache.org/docs/2.2.0/streaming-custom-receivers.html
7https://www.w3.org/TR/rdf-sparql-query/
8https://spark.apache.org/mllib/

150

A
cq

u
isitio

n
 an

d

C
o

n
tro

l Laye
r

D
ata

Tran
sfo

rm
atio

n

Laye
r COCI Ontology

Implemented
Transformations

Sensors,
Actuators

Additional
Internal Data

Sources

External Data
Sources

OPC UA, Web Services, JDBC …

Platform Integration

Semantic Integration

Data Storage Layer

Big Data Triple-Store

Analytic Layer

Analytic Framework Custom User Queries

Fig. 1. Semantic Big Data Historian architecture

they are referenced “relatively” instead of “absolutely”, e.g.,
humidity sensors from a particular room A and their measure-
ments may be acquired by querying SBDH using following
query — “get all humidity sensors from room A and get their
measurements”; instead of their direct referencing using their
IP address, etc.

The basic idea of Plug&Play was roughly introduced in
preceding paragraphs and more detailed description of the
Plug&Play concept may be found in [7].

Obviously, there are several aspects which cannot be gener-
ally solved. One of these aspects is security. Security solution
(authorization and authentication) for a connection of the
device to SBDH and subsequent communication is application
sensitive, and every application, as well as every company,
may have specific requirements for the security. In our solu-
tion, certificates are used during device connection to SBDH.

The other important requirement on SBDH is ensuring easy
discovery functionality of connected devices capabilities. This
topic is discussed in following paragraphs.

IV. OPC UA DISCOVERY IN SEMANTIC BIG DATA
HISTORIAN

OPC UA Discovery is one of the enablers for the intro-
duced Plug&Play concept. It provides and manages a device
registration as well as establishing a connection to Apache
Spark. On the other hand, there are several limitations in OPC
UA discovery capabilities according to OPC UA standard, and
they are discussed in following paragraphs.

As previously mentioned, data streams are received using
the OPC UA client (based on Eclipse Milo9 OPC UA standard
implementation) which is implemented as Spark Streaming
Custom Receiver. If SBDH only reads data streams provided
by devices and any other functionality is expected from

9https://projects.eclipse.org/projects/iot.milo

SBDH, then everything needed may be solved and managed by
standard OPC UA global discovery server, OPC UA client, and
Apache Spark. However, communication between devices and
SBDH is bidirectional (SBDH requires to control devices —
e.g., actuators) and furthermore the feedback may be a target
at various relevant devices. In other words, the feedback is not
controlled by an OPC UA client (a receiver of SBDH), but it
is controlled by the analytic layer of SBDH. Therefore, there
should be a way to find a corresponding device. For example,
a control algorithm decides to close valves of a heating system
in specific rooms of a building based on data from an outside
temperature sensor and a light sensor.

The high level SBDH discovery architecture is illustrated in
Fig. 2. Unfortunately, the current standard does not provide a
way to find a specific OPC UA server based on its capabilities
which are explicitly specified in machine readable format.

A. Knowledge-Driven OPC UA Discovery

Because of aforementioned reasons, an integration of OPC
UA discovery and COCI ontology seems to be able to provide
demanded functionality for SBDH. Every connected device,
such as sensor, actuator, or even more complex devices, have
a corresponding concept in COCI, which represents a given
type of the device, and a corresponding individual, which
represents a particular realization of the concept — a given
particular device. The Concept URI from COCI is identical
to Product URI of the discovery FindServer method response
and Individual URI is identical to Application URI.

The simplified mechanism of the knowledge-driven OPC
UA discovery is illustrated in Fig. 3. The workflow from an
actuator point of view is summarized in following steps:

1) Device registration — first of all, the actuator has to be
registered using OPC UA discovery server. The actuator
shall send common information needed for the discovery
(where Product URI is a corresponding Concept URI
and Application URI is a URI of a given individual)
accompanied by the semantic metadata. These metadata
includes a reference to a OPC UA method which is
related to a possible action of the actuator according
to COCI ontology.

2) Decision from the analytic layer — analytic tasks per-
formed by the analytic layer may result in a requirement
to control particular devices. The analytical layer has
all needed information about individuals (i.e., individual
URIs, correspondent concept URIs, and possible actions
which may be performed by devices). The OPC UA
client is called from this layer to find relevant OPC UA
servers of devices using OPC UA discovery.

3) Find servers request — OPC UA client calls OPC UA
discovery server. There are two parameters in FindServer
request. None of them is suitable for filtering servers
for a response. Only Server URL may be exploited but
we prefer “relative” references instead of “absolute”
references due to possible changes in URLs of device.

4) Filtering find server response — if the OPC UA client
receives a list of OPC UA servers then it is filtered using

151

Fig. 2. OPC UA discovery in Semantic Big Data Historian

Analytic Layer

OPC UA
Discovery Server

ControlDevice
(IndividualURI)

Semantic Big Data
Historian

Request FindServers
(Application URI = Individual URI)

Response FindServers
(Discovery URL)

Device to
Control

OPC UA Server

1. Request GetEndpoints()

OPC UA Client

2. Request
OpenSecure

Channel()

Fig. 3. Semantic Big Data Historian — Discovery workflow

specific URIs representing individuals (devices) or using
a URI of a given concept to obtain a specific type of
devices.

5) Connection to devices — the OPC UA client has to
establish connections to devices. First, it calls GetEnd-
points request to obtain a list of available endpoints.
Next, the client chooses an appropriate endpoint. Fi-
nally, the client calls OpenSecureChannel request. If
everything was processed without any problem, then the
connection is established.

The described extension of OPC UA discovery, which
provides possibilities to find devices according to their capa-
bilities, may be understood as semantic matchmaking which

is shifted from the discovery server to SBDH analytic layer,
COCI ontology, and a reasoner. The semantic matchmaking is
described in the following paragraphs.

B. Semantic Matchmaking

The fact that the Plug&Play CPS devices (sensors, actuators,
or their integrations) are described in OWL allows semantic
matchmaking, for searching appropriate connected sensors.
This can be used for any querying within SBDH, such as
user queries, looking for appropriate sensors or devices for a
job at hand, including possible substituion or replacement, for
diagnostics purposes, etc.

In general [8], when the semantic description of a sensor is
D and the query request is R, then the following levels can
be recognized:

• Exact. When D ≡ R, i.e., when D and R are equivalent
concepts, then the sensors are exactly the same. This is
the best situation, however, such match may not be found
for a particular request and available sensors.

• PlugIn. When R @ D, i.e., when R is a subconcept of
D, then the match level is PlugIn. An example is that the
request R is a humidity sensor with sampling frequency
1 hour and the sensor D is a humidity sensor sampling
frequency 1 second. In this case the D certainly satisfies
all the R requirements, it provides even more. That is
why the D can be ”plugged-in” to request R, without
any side-effects. This is usually also a good situation —
something usable for the query was found, but unlike
Exact match, it can be at additional cost that may be not
necessary.

• Subsume. When D @ R, i.e., when R is a superconcept
of D, then the match level is Subsume. An example is
that the described sensor D is a humidity sensor with
operating temperature range 0−40 ◦C and the request R
a humidity sensor with operating temperature range 0−

152

100 ◦C. The matched sensor D is satisfying the request
R only partially — there is some match, D can be used
to some degree, but not all the requested features are
available.

• Intersection. When ¬(D u R @ ⊥), i.e., when the
intersection between R and D is not empty, then the
match level is Intersestion. This means that there is some
overlap between the requested and the matched sensor,
such as in the case when the request R is humidity
sensor able to work in explosion hazard area and having
operating temperature range 0 − 100 ◦C and sampling
frequency 1 hour, while the sensor D is a humidity
sensor with sampling frequency 1 second and operating
temperature range −20−20 ◦C. The intersection is a hu-
midity sensor with operating temperature range 0−20 ◦C
and sampling frequency 1 hour — i.e., the request R
is not only not fully satisfied, but in addition there is
some additional functionality that is not needed and may
bring unnecessary costs or side effects. Nevertheless, the
intersection is not empty.

• Disjoint. When D u R @ ⊥, i.e., when there is no
intersection, the matchmaking failed. For example, when
the sensor D is a temperature sensor and the request R
is a drilling machine, then there is no overlap and there
is no practical way of satisfying the request R.

Note that the levels are sorted according to their usefulness
— the Exact match is the best match, PlugIn is the second
best match, etc., till Disjoint which is the worst situation.

V. CONCLUSIONS

In this paper, we have introduced the prototype solution
for knowledge-driven OPC UA discovery which is a part
of Semantic Big Data Historian. The extension of OPC UA
discovery is based on the integration of Semantic Web tech-
nologies with OPC UA and specific SBDH architecture.

A common problem is how to find a device based on its
capabilities. In the previous sections, a solution is presented
showing that ontologies may solve this problem. This OPC
UA discovery extension may be perceived as the semantic
matchmaking with the help of OWL and a DL reasoner.

This extension may have important benefits for facilitating
flexible manufacturing. The semantic matchmaking may find
an alternative device in cases when a precisely required device
is unavailable.

Furthermore, we hope that the part of the presented problem
(a shared conceptualization based on specific devices standard-
ization which is in our case represented by COCI ontology)
will be solved in the near future by OPC Foundation. Such
a shared conceptualization provided by some respected entity
such as OPC Foundation should guarantee high interoperabil-
ity of devices originated from various manufacturers.

In future work, we would like to focus on more complex
systems — represented by integration of various sensing de-
vices and various actuators. Furthermore, the problem of how
to verify the suitability of an alternative device automatically
should be solved, e.g., the presented use-case where a sensor

with higher sampling frequency is an alternative sensor for a
sensor with a lower frequency cannot be suitable for every
application.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] E. A. Lee and S. A. Seshia, Introduction to embedded systems: A cyber-
physical systems approach. MIT Press, 2016.

[3] (2017) OPC Unified Architecture Specification. [On-
line]. Available: https://opcfoundation.org/developer-tools/specifications-
unified-architecture

[4] V. Jirkovský, “Semantic integration in the context of cyber-physical
systems,” Ph.D. dissertation, Czech Technical University in Prague, 2017.

[5] V. Jirkovský and M. Obitko, “Enabling semantics within industry 4.0,”
in Industrial Applications of Holonic and Multi-Agent Systems, V. Mařı́k,
W. Wahlster, T. Strasser, and P. Kadera, Eds. Cham: Springer Interna-
tional Publishing, 2017, pp. 39–52.

[6] V. Jirkovský, M. Obitko, and V. Mařı́k, “Understanding data heterogeneity
in the context of cyber-physical systems integration,” IEEE Transactions
on Industrial Informatics, 2016.

[7] V. Jirkovský, M. Obitko, P. Kadera, and V. Mařı́k, “Towards plug play
cyber-physical system components,” IEEE Transactions on Industrial
Informatics, pp. 1–1, 2018.

[8] L. Li and I. Horrocks, “A software framework for matchmaking
based on semantic web technology,” Int. J. Electronic
Commerce, vol. 8, no. 4, pp. 39–60, 2004. [Online]. Available:
https://doi.org/10.1080/10864415.2004.11044307

153

