
Zero-Knowledge and Identity-Based Authentication
and Key Exchange for Internet of Things

Irfan Simsek, Erwin P. Rathgeb
Computer Networking Technology Group

University of Duisburg-Essen
Essen, Germany

{irfan.simsek, erwin.rathgeb}@uni-due.de

Abstract—The Internet of Things (IoT) is a dynamic and large-
scale infrastructure of uniquely identifiable, potentially resource-
constrained, and heterogenous things sensing and influencing
their environment to provide services with or without direct
human intervention. Moreover, the de facto method applied so
far to provide communication confidentiality and integrity is
cryptography. This requires an authentic key exchange between
two communicating entities, which in turn needs a mutual
authentication of the entities. In this paper, we introduce a
novel approach supplying zero-knowledge and identity-based
authentication with integrated key exchange while meeting the
IoT challenges. Our approach is resistant to active man in the
middle attacks and does not include any costly cryptographic
operations. Also, it does not require any predistribution or
pre-sharing with regard to authenticating entities. Additionally,
our identity-based scheme allows that a thing can operate
autonomously in a secure manner. Furthermore, this scheme
provides application-independence without requiring additional
components and procedures. After discussing our approach,
this paper also presents our prototype implementation and its
evaluation.

Index Terms—Internet of Things, security, authentication, key
exchange, zero-knowledge proof, identity-based key generation.

I. INTRODUCTION

According to the existing discussions about the Internet of
Things (IoT) [1], it can be stated that IoT is a network of
dynamic networks of a huge number of addressable, uniquely
identifiable, potentially resource-constrained, and heteroge-
nous things sensing and influencing their environment to
provide services with or without direct human intervention.
This statement implies the IoT challenges to be met by IoT
approaches. The first challenge is that IoT is a highly dynamic
and very large-scale network of resource-constrained devices.
Moreover, IoT is an infrastructure of heterogenous things.
This means that there do not exist any fixed communication
workflows, e.g., like in the Web. Thus, IoT approaches to be
applied universally have to be application-independent. Ad-
ditionally, IoT is an autonomous infrastructure. However, this
does not mean that IoT can operate completely without human
intervention. E.g., each thing has an owner/operator and needs
a certain startup setup by its owner. After this setup, things
have to be able to operate autonomously. Furthermore, things
have to be uniquely identifiable. Thus, it is an advantage that
IoT approaches follow an identity-based scheme. In addition,

IoT is a service-providing infrastructure. Consequently, IoT
needs infrastructure supporting instances for diverse function-
alities such as service mapping and authorisation, just like in
each service-providing infrastructure such as the conventional
Internet.

Besides these considerations for IoT, communication con-
fidentiality and integrity are quite important security require-
ments. The de facto method applied so far is cryptography.
However, this needs an authentic key exchange between two
communicating entities, which in turn requires a mutual au-
thentication of the entities. Since IoT is a highly dynamic
and very large-scale infrastructure, an approach providing
authentication and key exchange for IoT cannot be based
on public data predistribution or secret pre-sharing between
authenticating things. Moreover, it cannot rely on human
interventions due to the autonomous character of IoT. With
regard to the heterogeneity in IoT, the approach has to be
application-independent without requiring additional compo-
nents or procedures, except the de facto existing ones such as
thing owner, infrastructure supporting instance, thing startup
setup, service mapping, and authorisation. Additionally, the
approach cannot include costly cryptographic operations due
to resource-constrained devices in IoT. Furthermore, the ap-
proach has to be resistant to active man in the middle attacks
which can be classified as the strongest adversary model.

This paper introduces a novel approach providing mutual
authentication with integrated key exchange while meeting the
IoT challenges and security requirements introduced above.
Here, we combine zero-knowledge [2] and identity-based [3]
schemes and thereby leverage the existing components as
well as procedures described above. Especially, we expand
the Goldreich-Micali-Wigderson (GMW) zero-knowledge pro-
tocol [4] for a mutual authentication and for an authentic
key exchange. We choose the GMW protocol, since it does
not include any costly cryptographic operations and is per-
fect zero-knowledge, i.e. resistant to malicious prover and
verifier [4]. This implies that this protocol is suitable for
resource-constrained devices and is resistant to active man in
the middle attacks, which also apply to our approach. For
authentication public data and secret generation, we follow an
identity-based scheme. This provides that we do not need any
public data predistribution or secret pre-sharing with regard
to authenticating things. Moreover, this scheme allows that978-1-5386-4980-0/19/$31.00 ©2019 IEEE

283

A

B
𝐻" 𝑏 𝜎" 𝑌/𝑁

random bit 𝑥 ∈ 0,1 and perm. 𝜏"
compute 𝜏" 𝐺"/ = 𝐻"

random bit 𝑏 ∈ 0,1

𝜎" = 𝜏" if 𝑥 = 𝑏
𝜎" = 𝜏" ∘ 𝜋"34 if 𝑥 = 0 and b = 1
𝜎" = 𝜏" ∘ 𝜋" if 𝑥 = 1 and b = 0
with 𝜎" 𝐺"6 = 𝐻"

check 𝜎"(𝐺"6) = 𝐻"

1

2

3

4

Fig. 1. The GMW zero-knowledge protocol.

a thing can operate autonomously in a secure manner after
a startup setup by its owner. Additionally, our identity-based
scheme supplies application independence without requiring
additional components and procedures.

The rest of this paper is structured as follows. In Section II,
we sketch the GMW protocol and discuss related work.
Section III presents and Section IV analyses our approach.
Our prototype implementation and our evaluation results are
discussed in Section V. Finally, we conclude our paper and
outline our future work in Section VI.

II. RELATED WORK

While [5] gives a survey of IoT, overviews about IoT
security and authentication protocols for IoT can be found
in [6] and [7] respectively. Key exchange protocols, identity-
based cryptography, and zero-knowledge protocols are studied
in [8], [3], and [2] respectively.

Zero-knowledge protocols provide that an entity can prove
the knowledge of its secret associated to public data without
revealing any information about the secret. In general, the
prover A randomly generates a witness and sends it to the
verifier B. The witness defines challenges which A claims
to be able to meet by means of its secret. B challenges A
by randomly selecting one of the challenges defined by the
witness. A supplies its answer, and B checks it for correctness.
This can be iterated to decrease the cheating probability.
Thus, zero-knowledge protocols are designed to be resistant
to chosen-text attacks [9].

In identity-based cryptography, an entity A gets its public
and private key pair from a trusted Key Generation Cen-
ter (KGC). Here, KGC generates A’s key pair by means of its
own key pair and A’s identity information. Moreover, A’s pub-
lic key is created in such a manner that any other entity can
also generate A’s public key by using KGC’s public key
and A’s identity information. In this way, only KGC’s public
key has to be distributed authentically.

The Goldreich-Micali-Wigderson (GMW) zero-knowledge
protocol [4] based on the graph isomorphism problem is one
of the most popular zero-knowledge protocols. Two graphs

G0 = (V0, E0) and G1 = (V1, E1) with n vertices are isomor-
phic, if there exists a permutation π with (π(u), π(v)) ∈ E1

for each (u, v) ∈ E0. There is no known polynomial time
algorithm solving this problem for regular graphs. In the GMW
protocol, an entity A with the secret πA associated to the
public data (GA0

, GA1
) with πA(GA0

) = GA1
proves to

the entity B that it knows the secret without revealing any
information about its secret. For that, A has to complete r
rounds successfully, and each round proceeds as follows (see
Figure 1):

1) First, A picks a random bit x and creates a
random permutation τA. Subsequently, A gener-
ates HA = τA(GAx

) and sends it to B.
2) Upon receiving HA, B picks a random bit b and sends

it to A.
3) Afterwards, A computes σA with σA(GAb

) = HA and
sends it to B. Here, σA = τA if x = b, σA = τA ◦ π−1

A

if x = 0 and b = 1, and σA = τA ◦ πA if x = 1
and b = 0. 1

4) After receiving σA, B checks whether σA(GAb
) = HA.

If so, B sends YES. Otherwise, B sends NO and breaks
up the round.

Here, a dishonest prover can cheat if he guesses b before
sending the permuted graph. Thus, the cheating probability
for each round is 1/2, and it is (1/2)r for the entire protocol
(e.g., ≈ 10−9 for r = 32). This protocol is perfect zero-
knowledge, i.e. resistant to malicious prover and verifier,
since b cannot depend on x, as τA is completely random [4].

The GMW zero-knowledge protocol is leveraged by diverse
approaches. The most closely related one to our work is [10].
This approach provides authentication with key exchange but
is only suitable for static networks due to predistribution, and
thus does not fit the IoT challenges. Moreover, a certain part
of τA is used for encoding of a public key part into HA, and τA
is thus not completely random. Furthermore, this approach can
encode only n/4 bits in each round at most.

III. CONSTRUCTION

Our approach consists of multiple parts. First, we discuss
how an unique permutation can be generated from a given
identifier. The second part introduces identity-based generation
of a public graph tuple and a secret permutation. After that,
we describe the encoding of a given bit sequence into a graph
by permuting a given graph. The next part expands the GMW
zero-knowledge protocol for an authentic key exchange and
for a mutual authentication. After outlining the thing startup
setup and service registration as well as authorisation, the last
part uses the introduced components to set up a secure channel
between two things.

A. Identifier Permutation Generation

Any integer number N < n! can be represented by
an unique n-digit factoradic number (dn−1...d0) of the

1◦ denotes the product of two permutations, where the rightmost permuta-
tion is applied first.

𝐺"# 𝐺"$

𝜋&'()

𝐺"*# 𝐺"*$
𝜋"*

𝜋"

𝜋&'(𝐺"'

𝜋"'

Fig. 2. Identity-based public data and secret generation.

form N = dn−1 · (n − 1)! + ... + d0 · 0! with di ≤ i.
Lehmer [11] shows the correspondence between permutations
and factoradic numbers. Thus, an unique permutation π of
elements {0, ..., n − 1} can be generated from a factoradic
number (dn−1...d0). Here, for each element 0 ≤ i ≤ n−1 we
set π(i) to dn−1−i

th element and remove this element from
the element list.

However, up to 40! has to be computed, e.g., for a 160-bit
identifier, which is not appropriate for a resource-constrained
device. Therefore, the identifier is split into 4-bit blocks, and
a factoradic number is generated for each 4-bit block. Thus,
each 4-bit block value is smaller than 16, and only up to 3! has
to be computed for each factoradic number. The permutation
elements are also split into 4-element blocks. At last, a 4-
sub-permutation is generated from each factoradic number as
described above. Thus, the identifier permutation consists of
the sub-permutations.

B. Identity-Based Public Data and Secret Generation

A thing owner TO creates a random k-regular undirected
graph GTO0 with n = 2k + 1 vertices. Alternatively, the
owner can permute a default k-regular undirected graph
with his identifier n-permutation πIDTO

generated as de-
scribed in Section III-A to create GTO0

. After that, the
owner generates a random n-permutation πTO and computes
GTO1

= πTO(GTO0
). Here, pubTO = (GTO0

, GTO1
) is the

public data of the owner, and πTO is its secret.
For each thing T with the identifier IDT (thus, πIDT

is T ’s
identifier n-permutation) the owner

• chooses a random n-permutation πTD,
• creates GTD = πTD(GTO1),
• generates GT0 = πIDT

(GTOo) as well as
GT1

= πIDTO
(GTD), and

• computes πT = πIDTO
◦ πTD ◦ πTO ◦ π−1

IDT
.

Here, pubT = (GT0 , GT1) is T ’s public data, and πT is its
secret with πT (GT0) = GT1 . The relationship between the
graphs and the permutations is given in Figure 2. The owner
gives {GTD, (GT0

, GT1
), πT } to the thing but keeps πTD

secret. Here, we want to point out that πTD is needed to
provide that the thing cannot find out the secret of the owner
by using its own secret. Additionally, πT cannot be computed
in polynomial time without knowing πTO and πTD. Thus, πT

can only be created by the thing owner. Furthermore, everyone
having IDTO, IDT , and (GTO0 , GTD), which can be known
publicly, can generate (GT0

, GT1
).

C. Bit Encoding through Graph Permutation

For the adjacency matrix G[][] of a given k-regular undi-
rected graph G with n = 2k + 1 vertices and for a
given bit sequence (b0...bk−1) our goal is to compute a
permutation κ called key permutation with κ(G) = H and
(H[0][1]...H[0][k]) = (b0...bk−1). It is clear that such a
permutation exists, since G is a k-regular graph with 2k + 1
vertices and thus has exact k set bits in its first row. First, we
set κ(0) to 0, i.e. κ(0) := 0. For each bi with 0 ≤ i ≤ k−1 we
check whether G[0][i+1] = bi. If so, we set κ(i+1) := i+1.
Otherwise, we look for an unused column j > k with
G[0][j] = bi and set κ(i+1) := j and κ(j) := i+1. Thus, the
column is marked as used. The complete procedure is given
by Algorithm 1. In this way, we can encode (n − 1)/2 bits
into a k-regular graph with n = 2k + 1 vertices.

Algorithm 1 Bit encoding
b := {b0, ..., bk−1}
pb := {G[0][k + 1], .., G[0][n− 1]}
c := {k + 1, ..., n− 1}
κ(0) := 0
for i = 0 to k − 1 do

if G[0][i+ 1] == b[i] then
κ(i+ 1) := i+ 1

else
for l = 0 to pb.length do

if pb.at(l) == b[i] then
κ(i+ 1) := c.at(l)
κ(c.at(l)) := i+ 1
pb.remove(l)
c.remove(l)
break

D. Mutual Authentication with Key Exchange

The entities A and B aim to mutually authenticate each
other and to authentically exchange their public keys pkA
and pkB with a bit length of r · k. Here, they mutually prove
the knowledge of their secrets πA and πB associated to their
public data pubA = (GA0 , GA1) and pubB = (GB0 , GB1)
with πA(GA0

) = GA1
and πB(GB0

) = GB1
. The public

data and secrets are generated as described in Section III-B.
We first assume that A and B already know their public
data (GA0

, GA1
) and (GB0

, GB1
). In the next sections, we

discuss how they can generate the public data of each other
by means of their identifiers. Before proceeding with the au-
thentication and key exchange, A and B split their public keys
into k-bit blocks {pkA0

, ..., pkAr−1
} and {pkB0

, ..., pkBr−1
}.

The entities have to complete r rounds successfully, and each
round Ri proceeds as follows (see Figure 3):

1) A picks a random bit x as well as a random permuta-
tion τA and generates τA(GAx) = G̃Ax

. Additionally, A

285

A

B
𝐻" 𝑏, 𝐻% 𝜎", 𝑎 𝑌/𝑁, 𝜎% 𝑌/𝑁

random bit 𝑥 ∈ 0,1 and perm. 𝜏"
compute 𝜏" 𝐺"1 = 𝐺3"1, key perm. 𝜅", and 𝜅" 𝐺3"1 = 𝐻"

random bits 𝑦, 𝑏 ∈ 0,1 and perm. 𝜏%
compute 𝜏%(𝐺%7) = 𝐺3%7, key perm. 𝜅% , and 𝜅%(𝐺3%7) = 𝐻%

𝜎" = 𝜅" ∘ 𝜏" if 𝑥 = 𝑏
𝜎" = 𝜅" ∘ 𝜏" ∘ 𝜋";< if 𝑥 = 0 and b = 1
𝜎" = 𝜅" ∘ 𝜏" ∘ 𝜋" if 𝑥 = 1 and b = 0
with 𝜎" 𝐺"> = 𝐻", random bit 𝑎 ∈ 0,1

𝜎% = 𝜅% ∘ 𝜏% if y = 𝑎
𝜎% = 𝜅% ∘ 𝜏% ∘ 𝜋%;< if y = 0 and a = 1
𝜎% = 𝜅% ∘ 𝜏% ∘ 𝜋% if y = 1 and a = 0
with 𝜎% 𝐺%A = 𝐻% , check 𝜎"(𝐺">) = 𝐻"

check 𝜎%(𝐺%A) = 𝐻%

1

2

3

4

5

Fig. 3. Mutual zero-knowledge authentication with key exchange.

computes the key permutation κA for G̃Ax
and for

its public key part pkAi as described in Section III-C.
Furthermore, A creates κA(G̃Ax) = HA and sends it
to B.

2) After receiving HA, B proceeds analogously and thus
creates HB . Additionally, B picks a random bit b and
sends {b,HB} to A.

3) Upon receiving {b,HB}, A computes the permuta-
tion σA with σA(GAb

) = HA. Here, σA = κA ◦ τA
if x = b, σA = κA ◦ τA ◦ π−1

A if x = 0 and b = 1,
and σA = κA ◦ τA ◦ πA if x = 1 and b = 0.
Additionally, A picks a random bit a and sends {σA, a}
to B.

4) Analogously, B computes σB with σB(GBa) = HB .
After that, B checks whether σA(GAb

) = HA. If so, B
sends {Y ES, σB} to A. Otherwise, B sends {NO} and
breaks up the round.

5) If A gets the YES message, it checks
whether σB(GBa) = HB . If so, A sends {Y ES}
otherwise A sends {NO} and breaks up the round.

E. Thing Startup Setup

In each service-providing infrastructure such as IoT, there
exist infrastructure supporting instances (ISI) for various
functionalities such as service mapping and authorisation
management. In our approach, a thing owner TO registers
himself with such an instance (see Figure 4). To do so,
the owner sets up an authentic channel (e.g., by means of
Transport Layer Security (TLS) [12]) to the instance ISI
with the identifier IDISI and sends his identifier and public
data pubTO = (GTO0

, GTO1
). After receiving that, ISI

sends its own public data pubISI = (GISI0 , GISI1) to
the owner. TO and ISI generate their public data as
introduced in Section III-B. Thus, πTO is TO’s secret
with πTO(GTO0) = GTO1 , and πISI is ISI’s secret

TO
T

ISI

Authentic channel setup

{𝐼𝐷$%, (𝐺$%), 𝐺$%*)}

{(𝐺-.-), 𝐺-.-*)}

{ 𝐼𝐷$%, 𝑝𝑢𝑏$% ,	
𝐼𝐷-.-, 𝑝𝑢𝑏-.- ,

𝐼𝐷$, 𝐺$3, 𝑝𝑢𝑏$, 𝜋$ }

Secure channel setup

Thing Startup Setup Thing Owner
Registration

Fig. 4. Startup setup.

T ISI
{𝐼𝐷$%,𝐼𝐷$,𝐺$(, (𝐺*+*, , 𝐺*+*-)}

{(𝐺$,, 𝐺$-)}

Mutual zero knowledge authentication
with key exchange

Secure channel setup

1

2

3

4

Fig. 5. Thing registration.

with πISI(GISI0) = GISI1 . Here, we want to point out that
the owner performs this registration only once for himself.

Each device providing a service needs a certain startup
setup to perform its functionalities as desired. Thus, for each
thing T with the identifier IDT its owner generates GTD as
well as T ’s public data pubT = (GT0

, GT1
) and secret πT

as described in Section III-B. After that, the owner sets up
a secure channel (e.g., based on a one-time password, or
by using near field communication) to the thing and sends
{(IDTO, pubTO), (IDISI , pubISI), (IDT , GTD, pubT , πT)}
(see Figure 4). By means of (IDISI , pubISI), the thing gets
to know with which instance it has to register its services and
their authorisation.

F. Thing Service Registration and Authorisation

After the startup setup (see Section III-E), services provided
by a thing T with the owner TO and authorisations for service
use have to be securely registered with the instance ISI . In our
approach, the thing can autonomously perform this as follows
(see Figure 5):

1) T sends {IDTO, IDT , GTD, (GISI0 , GISI1)} to ISI .
2) If the thing owner TO is successfully registered, ISI

generates (GT0
, GT1

) by using IDTO, IDT ,
and (GTO0 , GTD) (see Section III-B) and sends
it to the thing. Thus, each of T and ISI
gets a challenge, i.e. proving to know their
respective secrets πT and πISI associated to
their respective public data pubT = (GT0

, GT1
)

and pubISI = (GISI0 , GISI1).
3) Subsequently, T and ISI mutually authenticate each

other and authentically exchange their public keys as

A B

ISI
Service?

{𝐼𝐷$
,𝐼𝐷$

&,(
𝐺$&)

, 𝐺$*
)}

Is 𝐼𝐷- authorised?

If yes, {𝐼𝐷
-& , (𝐺-&) ,𝐺-*)}

{𝐼𝐷-, (𝐺$) ,𝐺$.)}

{(𝐺-) ,𝐺-.)}

Mutual zero knowledge authentication with key exchange

Secure channel setup

1

2

3

4

5

6

7

8

Fig. 6. Thing-to-thing communication.

introduced in Section III-D.
4) T and ISI set up a secure channel by generating a

symmetric session key by using their public keys, e.g.,
just like in TLS.

The thing can then use this channel to securely register itself
with the instance. Here, we want to point out that the owner
can also set up a secure channel with his thing in a similar
way, e.g., to securely reconfigure it.

G. Thing-to-Thing Communication

We assume that the things A and B already have set
up a secure channel with the instance ISI and registered
themselves with ISI as introduced in Section III-F. A with the
identifier IDA aims to securely use a service provided by B
with the identifier IDB . Here, the identifiers of A’s owner AO
and B’s owner BO are IDAO and IDBO respectively. More-
over, AO’s and BO’s public graph tuples are (GAO0

, GAO1
)

and (GBO0
, GBO1

). Additionally, GAD and GBD are gener-
ated and registered with ISI as introduced in Section III-B
and in Section III-F. To set up a secure channel between A
and B, the following procedure is used (see Figure 6):

1) A queries ISI for a thing providing the service.
2) Upon receiving the request, ISI responds

with {IDB , IDBO, (GBO0 , GBD)}.
3) By using ISI’s response, A generates B’s challenge,

i.e. B’s public data pubB = (GB0
, GB1

) (see Sec-
tion III-B) and queries B for the service by sending
a request message containing {IDA, (GB0

, GB1
)}.

4) For the incoming request, B asks ISI whether A is
authorised to use the service.

5) If A is authorised, B gets {IDAO, (GAO0
, GAD)}.

6) Subsequently, B analogously generates A’s challenge,
i.e. A’s public data pubA = (GA0

, GA1
) and sends it

to A.
7) A and B mutually authenticate each other and exchange

their public keys as described in Section III-D.

8) A and B set up a secure channel based on a symmetric
session key generated by using their public keys.

Afterwards, A can begin to securely use B’s service.

IV. ANALYSIS

We have expanded the GMW protocol for a mutual authen-
tication and for an authentic key exchange. Since here the bits
selected by authenticating entities still cannot depend on each
other, and their τ -permutations are still completely random,
our approach is also perfect zero-knowledge like the GMW
protocol and thus is resistant to malicious prover and verifier.
Due to this property, our approach is resistant to an active man
in the middle attack which can be classified as the strongest
adversary model.

Our construction also allows that authenticating entities can
encode parts of their public keys into the H-graphs during the
mutual authentication. Since the H-graphs act as witnesses
for the knowledge of the secret permutations associated to the
public graph tuples of the entities, any modification of the H-
graphs by a third party leads to an authentication failure. Thus,
our approach does not only provide mutual authentication but
also supplies authentic exchange of public keys, e.g., generated
by using Elliptic Curve Cryptography (ECC) [13]. Moreover,
successfully authenticated entities can utilise the public keys
of each other to generate a symmetric session key in order to
set up a secure channel. This can provide confidentiality and
integrity for communication between a thing and its owner,
between a thing and an infrastructure supporting instance, as
well as between two things. Here, we want to point out that
our approach also allows to integrate a key agreement protocol
such as the Diffie-Hellman protocol [14].

Our approach follows an identity-based scheme and lever-
ages only the de facto existing components such as thing
owner and infrastructure supporting instance as well as pro-
cedures such as thing startup setup, service registration and
authorisation. In this way, we do not need any public data
predistribution or secret pre-sharing with regard to authen-
ticating things. Thus, our approach is very well suited for
highly dynamic and large-scale networks such as IoT and is
application-independent without requiring additional compo-
nents or procedures.

Due to the identity-based scheme, another benefit provided
by our approach is that a thing owner has to register himself
with an ISI only once, and his things can autonomously
register their services by the ISI in a secure manner. Thus,
our approach requires fewer human intervention, which is a
quite important benefit for IoT.

V. IMPLEMENTATION AND EVALUATION

In order to demonstrate the feasibility of our construction,
we have implemented the mutual authentication with key
exchange and the related parts (Section III-A, III-B, and III-C)
in Contiki [15] which is one of the widespread operating
systems for IoT. In our implementation, a graph with n vertices
requires n · dn/8e bytes. Moreover, we have only used simple
list operations of polynomial time to generate permutations,

287

2257

1132
562

8343

4171

2085

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

8 MHz 16 MHz 32 MHz

M
illi
se
co
nd
s

33 Vertices 65 Vertices

Fig. 7. Execution times for mutual authentication with key exchange.

to permute graphs, and to encode bit sequences.
We have evaluated the performance of our implementa-

tion on TI MSP430x [16], an ultra-low power microcon-
troller (MCU) emulated by the Contiki COOJA simulator [17].
Figure 7 shows the execution times (without communication
overheads) for the mutual authentication with key exchange for
graphs with 33 and 65 vertices as well as for the MCU fre-
quencies 8 MHz, 16 MHz, and 32 MHz. Here, we can observe
that the execution time decreases when the MCU frequency in-
creases and that the execution time increases when the number
of vertices increases. In our evaluation, authenticating entities
have to complete 32 rounds successfully, which implies a
cheating probability of more less than 10−9. Moreover, brute-
force searches for secret permutations between graphs with 33
and 65 vertices require more steps than 1036 and 1090. Thus,
this basic experiment proves the general feasibility and the
quite good performance of our approach with a strong security.

In sum, it can be stated that our approach provides mutual
authentication as well as authentic key exchange with regard
to a strong adversary model while meeting the IoT challenges
such as dynamic, scalability, application independence, auton-
omy, and resource constraint.

VI. CONCLUSION AND FUTURE WORK

This paper discussed the challenges as well as the security
requirements in IoT and introduced a novel approach for
zero-knowledge and identity-based authentication with key ex-
change while meeting the IoT challenges and security require-
ments. Moreover, we have demonstrated the feasibility and
performance of our approach by implementing it in Contiki
and by evaluating it on an ultra-low power microcontroller
emulated by the Contiki COOJA simulator.

In the future, we are going to optimise our approach with
regard to the number of rounds to be performed during
the authentication while retaining the same security level.
Moreover, we aim to integrate our optimised approach into
common IoT protocols and architectures [5]. Furthermore,
we want to develop systems for thing service registration,

discovery, and authorisation as well as for thing identifier
structure and management on the basis of our approach.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[2] O. Goldreich, “Zero-knowledge twenty years after its invention.” IACR
Cryptology ePrint Archive, vol. 2002, p. 186, 2002.

[3] J. Baek, J. Newmarch, R. Safavi-Naini, and W. Susilo, “A survey of
identity-based cryptography,” in Proc. of Australian Unix Users Group
Annual Conference, 2004, pp. 95–102.

[4] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield nothing
but their validity or all languages in np have zero-knowledge proof
systems,” Journal of the ACM (JACM), vol. 38, no. 3, pp. 690–728,
1991.

[5] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[6] F. A. Alaba, M. Othman, I. A. T. Hashem, and F. Alotaibi, “Internet of
things security: A survey,” Journal of Network and Computer Applica-
tions, vol. 88, pp. 10–28, 2017.

[7] M. A. Ferrag, L. A. Maglaras, H. Janicke, J. Jiang, and L. Shu, “Au-
thentication protocols for internet of things: a comprehensive survey,”
Security and Communication Networks, vol. 2017, 2017.

[8] R. Canetti and H. Krawczyk, “Analysis of key-exchange protocols and
their use for building secure channels,” in International Conference on
the Theory and Applications of Cryptographic Techniques. Springer,
2001, pp. 453–474.

[9] J. Katz, A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone,
Handbook of applied cryptography. CRC press, 1996.

[10] P. Flood and M. Schukat, “Peer to peer authentication for small
embedded systems,” in Proceedings of 10th international conference
on digital technology, 2014, pp. 68–72.

[11] D. H. Lehmer, “Teaching combinatorial tricks to a computer,” in Proc.
Sympos. Appl. Math. Combinatorial Analysis, vol. 10, 1960, pp. 179–
193.

[12] E. Rescorla, “The transport layer security (tls) protocol version 1.3,”
RFC 8446, Tech. Rep., 2018.

[13] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic curve
cryptography. Springer Science & Business Media, 2006.

[14] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[15] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and
flexible operating system for tiny networked sensors,” in Local Computer
Networks, 2004. 29th Annual IEEE International Conference on. IEEE,
2004, pp. 455–462.

[16] MSP430x5xx and MSP430x6xx Family User’s Guide, Texas Instruments,
2018.

[17] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
level sensor network simulation with cooja,” in Local computer net-
works, proceedings 2006 31st IEEE conference on. IEEE, 2006, pp.
641–648.

288

