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Abstract—In recent years, the Internet of Things(IoT) is
expected to achieve an advanced information society based on
real world things. For such an achievement, the Wireless Sensor
Networks(WSNs) are an essential technology. They are configured
as precondition under which the location of the sensing event and
the number of the sensing events are known. On the other hand,
there are many situations that the locations and the number of
events are unknown in real world. In the situation, the mobile
sensing with multiple autonomous mobile devices, such as robot,
is required to search for and actuate many events in a limited
time. Accordingly, we previously proposed the Mobile Sensing
Cluster(MSC), which applies swarm intelligence to autonomous
mobile devices to dynamically forms multiple swarms that can
be applied to any situation and quickly search for and actuate
many events. In this paper, we consider and describe optimizing
mechanism of dynamic multiple swarming in MSC for the
purpose that searching and actuating a lot of events in a limited
time.

Index Terms—Wireless Sensor Networks, Particle Swarm In-
telligence, Autonomous mobile device.

I. INTRODUCTION

In recent years, the Internet of Things(IoT) [1] is expected
to achieve advanced information society. Since IoT aims
to actuate real world based on sensing a lot of events in
real world, the Wireless Sensor Networks(WSNs) [2] is an
essential network technology in IoT. The utilization for WSNs
are generally classified into stationary or mobile sensing.
The stationary sensing [3] uses a WSNs that deploys sensor
nodes around specified location of events, and the mobile
sensing uses a WSNs that make mobile sensor nodes patrol
specified locations of events. The both sensing premises that
the locations of sensing events are known.

On the other hand, in many situations, the locations of
events and number of events are unknown in real world. A
typical example of the situation is a searching for damages to
structures and infrastructure and a rescuing survivors during a
disaster.

The method [4] is proposed to apply to the above situation.
In [4], a autonomous mobile device searched for the locations
of events by sensing, and then the device actuates the discover-
ing events. That is, the autonomous mobile device is required
to take the following actions:

• searching for the locations of events by sensing physical
information from events;

• actuating the events, remaining around the discovering
events;

• repeating a search and actuating for multiple events;
• attempting to search and actuate more events within

limited time.

To address the above issues, most attempts form a single
swarm with multiple autonomous mobile devices to improve
the search and actuation performances. However, since form-
ing a single swarm requires sequential searches and the
actuation of multiple events, the turnaround time for multiple
events becomes too large. On the other hand, the Mobile
Sensing Cluster(MSC) [5] forms dynamic multiple swarms
with multiple autonomous mobile devices for the issues, and
balances cooperativeness and parallelism for searching and
actuating. In searching for and actuating unknown events,
MSC is superior to the parallel method in which all devices
behave selfish, and the cooperative method which forms a only
one swarm with all devices [5].

MSC consists of multiple autonomous mobile devices and
assumes that a single device has the following functions:

• self-location estimation;
• sharing information by wireless communication among

multiple-mobile devices;
• sensing strength of the physics information emitted from

events;
• actuation to the events.

MSC applies Particle Swarm Optimization(PSO) [6] to
multiple autonomous mobile devices and extends it to form dy-
namic multiple swarming. In MSC, the formation of dynamic
multiple swarming is an essential mechanism to the above
issues. In this paper, we consider and describe an optimization
mechanism for dynamic multiple swarm formation in MSC,
based on a scheme that selects leaders in each swarm.

The rest of this paper is organized as follows. We describe
related works in SectionⅡ, and MSC in SectionⅢ. In Section
Ⅳ, we show our simulation results and draw a conclusion is
drawn in Section Ⅴ.978-1-5386-4980-0/19/$31.00 © 2019 IEEE
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II. RELATED WORK

A. Robotic technologies in search and rescue operations

Robotic technologies have been used to search for and
rescue victims in a disaster scenes [4]. A robot is equipped
with a camera, sensors, and a mobility function to search
for and rescue objects. Most of investigations with robotics
technologies focus on the integration of above functions in
a single robot. However, investigation on robots cooperation
remains undeveloped.

B. Consensus problem in multiple agents systems

Multiple agents systems, which cooperatively controls co-
operatively arbitrary systems by multiple agents, are expected
to be used in the field of sensor networks or to control
autonomous robots. In such systems, the velocity of robots and
the values of sensing data coverage to an arbitrary value called
a consensus problem [7]. The systems aims to only obtain a
consensus among multiple agents, therefore, they consider the
formation of a single swarm.

C. Reynolds Flocking Model

The Reynolds Flocking Model [8], which simply simulates
by computer the swarming behavior of flock of birds, was
introduced by Reynolds in 1987. Each agents moves based on
the following three rules [9]:

• alignment: agents adjust their velocity to the velocity of
their neighbor agents;

• cohesion: agents are attracted to the average position of
their neighboring agents;

• collision avoidance: agents are repulsed from their neigh-
boring agents.

The Reynolds Flocking Model has no function to search
for an event because its algorithm maintains a swarm’s form,
which is organized by multiple agents. Therefore, it also
considers the formation for a single swarm.

D. Particle Swarm Optimization

The Particle Swarm Optimization(PSO) [10], which is in-
spired by the swarm behavior of flocks of birds and schools
of fish, is a mathematical search model based on multiple
particles. Each particle has a location and a velocity, and its
own location is evaluated using a fitness function. The velocity
of each particles is derived by its personal best and global
bests. The former is the best previous location of the particle
itself, and the latter is the best previous location of all the
particles.

Since PSO is a mathematical search model, it does not
consider the physical restrictions, which are collisions between
particles and the range of communication among them. Ad-
ditionally, PSO does not show the optimizing mechanism for
search with swarm since it’s just a model.

III. MOBILE SENSING CLUSTER

Since the MSC aims to search for and actuate unknown
events of which location and numbers are unknown in the
real world, it consists of the two following mechanisms:

• search and actuation mechanism based on PSO to un-
known events using wireless communication for interac-
tion between mobile devices;

• a dynamic multiple-swarming mechanism that extends
PSO to emergence of behavior that aggregates and divides
in multiple swarms.

MSC assumes the following:
• Mobile devices can autonomously move.
• They can estimate their own locations.
• They can sense such physical information strength as

radio waves, temperature, and smells.
• They can actuate an event.
• An event itself emits itself physical information.

In this section, based on the above assumption, we explain
MSCs.

A. Search and actuation mechanism

1) Location updating rule: To search for and actuate un-
known events in the real world, the mechanism operates in
each mobile device to derive a location to move toward based
on the updating rule as following:

vi(t+ 1) = wvi(t) + pbi(t)(x
Pbest
i (t)− xi(t))

+lbi(t)(x
Lbest(t)− xi(t)) + S⃗i

(1)

xi(t+ 1) = xi(t) + vi(t+ 1), (2)

where t is the time, vi(t) is the velocity of device i at iteration
t, pbi(t) is the weight of the personal best, lbi(t) is the weight
of the local best, xPbest

i is the personal best location, xLbest
i (t)

is the best location of the neighbors, and S⃗i is the collision
avoidance vector of device i.

2) Personal best location and local best location: The
personal best location is a location that each mobile device
derives by itself sensing physical information strength from
events, and is derived in according with the personal best
evaluation value as follows:

• If the personal best evaluation value improves, randomly
update the velocity vector around current moving direc-
tion.

• Otherwise, randomly update the velocity vector around
the opposite direction to a current moving direction.

xPbest
i (t) =


|vi(t− 1)|(cos(α+ β), sin(α+ β)) + xi(t)

if EPbest
i (t− 1) > EPbest

i (t)

−|vi(t− 1)|(cos(α+ β), sin(α+ β)) + xi(t)

otherwise.
(3)

Here EPbest
i (t) is a personal best evaluation value of the
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device i at time t, α is an angle of vi(t− 1) with x axis, and
β is a random angle in [−θ, θ].

The local best location is a location whose a neighbor device
is most nearest the events in the neighbor devices in the
wireless communication range. The indirect distance to the
nearest event in the neighbor devices is used as the local best
evaluation value.

3) Evaluation value: The above updating rule uses the
following three evaluation values:

• The personal best evaluation value shows the distance
from the nearest event in the discovery and sensing neigh-
bor events. The evaluation value is derived as follows:

EPbest
i (t) = min

k∈discoveryi(t)
{Ek

i (t)}, (4)

where discoveryi(t) is a set of discovered events by
device i at time t, and Ek

i (t) is an evaluation value
showing the distance from event K based on sensing the
physical information strength of event K in device i at
time t.

• The local best evaluation value shows the minimum
distance to an event in the neighbor devices, and it is
derived based on the self-evaluation value, which shows
the distance to an event in each device:

ELbest
i (t) = min

j∈neighbori(t)
{Ej(t)}, (5)

where ELbest
i (t) is the local best evaluation value of

device i at time t, neighbori(t) is a set of devices which
are neighbor devices on device i is found at time t, and
Ej(t) is a self-evaluation value of device j at time t.

• A self-evaluation value shows the distance to an event.
If the personal best evaluation value is less than the
personal best evaluation values of the neighbors in the
wireless communication range, the self-evaluation value
is the personal best evaluation value, and otherwise it is
the sum of the local best evaluation value and the distance
to the local best location, derived as follows:

Ei(t) =


EPbest

i (t)

if EPbest
i (t) < min

j∈neighbori(t)
{EPbest

j (t)}

ELbest
i + CLbest

i (t)

otherwise.
(6)

Here Ei(t) is the self-evaluation value of device i at time
t, and CLbest

i (t) is the distance to the local best location
of device i at time t.

4) Electing leader: As a leader in a swarm, MSC chooses
a device, which has a minimum personal best value for an
event. The leader only moves based on the personal best, and
any devices other than a leader (called ”followers”) just moves
based on the local best; that is, the leader selfishly moves to
the events and the followers obey the leader to search forming
a swarm. To emerge the above behavior in the swarm, the

weights of the personal best and that of local best are derived
as follows.

pbi(t) =

1 if EPbest
i (t) < min

j∈neighbori(t)
{EPbest

j (t)}

0 otherwise.
(7)

lbi(t) =

0 if EPbest
i (t) < min

j∈neighbori(t)
{EPbest

j (t)}

1 otherwise.
(8)

5) Collision avoidance control: MSC extends the collision
avoidance in the Reynolds Flocking Model. All devices have
collision avoidance vectors that repulse from other devices. A
collision avoidance vector is derived from the distance between
itself and other devices. The vector, which becomes a strong
repulsion vector as the device moves closer to the neighbor,
derived as follow:

S⃗i = ci3
∑
j∈n

−−−→
Vji(t)

|Vji(t)|(dij(t))k
(9)

where ci3 is the avoidance weight of device i,
−−−→
Vji(t) is the

velocity vector to device i from device j, n is the neighbor
devices of device i, dij is the distance between device i and
device j, and k is the avoidance degree.

6) Search and actuation phases: MSC repeatedly turns
between the search and actuation phases. In the former, as
described above, the devices search for the events by commu-
nicating with other neighbor devices based on Eqs.(1) and (2).
If the device senses the strength of the physical information
over the threshold, it decides that it has reached an event, and
turns to the actuation phase.

To stay within a range where the physical information
is strong over a threshold, the device decelerates, and to
evenly diffuse in the range, it adjusts the distance among the
neighbors. Next, the velocity vector in Eq.(1) and the collision
avoidance weight in Eq.(9) are derived as follows:

ci3 =

{
cSearch
3 if Ei > T

cSearch
3 /n otherwise.

(10)

vi(t) =


vi(t)

|vi(t)|
Mupper if |vi(t)| > Mupper

vi(t) otherwise
(11)

where cSearch
3 is the separation weight in the search phase, n

is an integer value n, T is a threshold entering the actuation
phase, and Mupper is the upper limit of the velocity per
seconds.

In the actuation phase, if a device becomes unable to sense
the physical information from an event in a period, it realizes
that the actuation for a event is completed. Then, to search
for other events, it discards the current evaluation values and
return to the search phase.
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7) Wireless communication among multi-mobile devices:
MSC utilizes wireless communication for sharing information
among the devices, which advertise information as follows and
share it among neighboring devices:

• self-location;
• personal best evaluation value;
• self-evaluation value.
The devices, which received the above information, utilize

it to update the self-location and each best evaluation values,
and the election of leader.

B. Dynamic multiple swarming mechanism

MSC dynamically forms multiple swarms in order to search
for and actuate in parallel to multiple events. To emerge
the above behavior, it introduces an event crowd degree for
deriving the personal best, and a neighbor crowd degree for
deriving the local best, and then divides a swarm into mulit-
swarms, and controls the number of devices that form a swarm
in each swarm.

1) Multiple leader for division to multiple swarms: As
described above, only one device is elected as a leader in a
swarm. The dynamic multiple swarming mechanism elects the
multiple leaders for multiple events in order to search for and
actuate by multiple leaders and multiple swarms. To divide
into multiple swarms based on multiple events, the weights of
the personal and local bests respectively are revised:

pbi(t) =

1 if E
Pbest(K)
i (t) < min

j∈neighbori(t)
{EPbest(K)

j (t)}

0 otherwise.
(12)

lbi(t) =

0 if E
Pbest(K)
i (t) < min

j∈neighbori(t)
{EPbest(K)

j (t)}

1 otherwise.
(13)

Here EPbest(K)
i (t) is a personal best evaluation value of device

i for event K at time t.
In addition, the event crowd degree is introduced to derive a

personal best to control the number of devices in a swarm. The
event crowd degree for an event K is a value that accords with
the number of neighbor devices in a swarm that approaches an
event K. By applying the event crowd degree to the personal
best value, since another leader can be elected to search for
other events in a swarm, a swarm is divided into multi-swarms.
The event crowd degree and the personal best evaluation value
that apply that degree are shown as follows:

Dk
i (t) = {x|x ∈ neighbori(t), P

k(x, t)} (14)

E
Pbest(K)
i (t) = min

k∈discoveryi(t)
{EPbest(k)

i (t) + c4|DK
i (t)|}

(15)

where PK(x, t) is a set of the devices approaching an event
K at time t, DK

i (t) is a set of the event crowd degree for
event K of device i, and c4 is a coefficient of the event crowd
degree.

j

i

Area of neighbor crowd degree

Fig. 1. Area of neighbor crowd degree.

2) Impartial swarm size among multi-swarms: To optimize
the search and actuation mechanisms based on multi-swarms,
the swarm size which is the number of devices forming a
swarm should be impartial among multi-swarms. Therefore, to
make the number of followers uniform among multi-swarms,
the neighbor crowd degree is applied to derivation in the local
best evaluation value. The neighbor crowd degree is a value
that accords with the number of devices between a device and
its neighbor devices in Fig.1. If the neighbor device degree
for a neighbor has a large value, that is, the swarm among
the neighbors is croweded, it follows another device with a
lower neighbor device degree. To emerge the above behavior,
the local best evaluation value is derived with the neighbor
device degree:

N j
i (t) = {x|x ∈ neighbori(t), x ∈ neighborj(t)} (16)

ELbest
i (t) = min

j∈neighbori(t)
{Ej(t) + c4|N j

i (t)|} (17)

where N j
i (t) is a neighbor crowd degree of device i for

neighbor device j at time t.

IV. ANALYSIS OF DYNAMIC MULTIPLE SWARMING
BASED ON SIMULATION

The number of leaders in a swarm is a critical issue for
dynamic multiple swarming in MSC. In this section, we
analyzed the issue in the case, where the physical information
from events includes random error, based on simulation for
MSC, and show the optimal number of the leaders in each
swarm.

A. Simulation specification

The simulation parameters are shown in Table I. The devices
and events are defined as follows:

• A device is equipped with an IEEE802.11b interface,
and periodically advertises its self-information, shown at
III-A7.

• An event is equipped with an IEEE802.11b interface,
and periodically advertises a beacon including such event
identities as a MAC address.

Each device receives the self-information from neighbor de-
vices, and beacons from some events, and it can identify events

973



TABLE I
SIMULATION PARAMETERS

Parameters Values

Simulator ns-3.26
Simulation time(sec) 5000

Number of trials for each simulation scenario 10
Number of devices 10∼40
Number of events 1,10∼40

Update cycle of velocity vector(sec) 0.1
Inertia weight w 0.5

Avoidance weight c3 in search phase 15
Avoidance weight c3 in actuate phase 5

Avoidance degree k 2
Coefficient of the crowd degree -10

Random number space for β in Eq.(3) [−30, 30]

Mupper in search phase(m/sec) 1
Mupper in actuate phase(m/sec) 0.3

Actuate capacity of an event 300
Wireless communication IEEE802.11b

Transmission power(dBm) 17.0206
Fading model Rician fading

Initial location of devices(m×m) (30,30)
Initial location of events(m×m) (100,100)

Distance to collision(m) 1

based on the received beacons. Each device also derives the
three evaluation values and they are defined them as follows:

• Personal best evaluation value(EPbest
i )

Based on Eqs.(14)(15), a personal best evaluation value
is defined:

E
Pbest(K)
i (t) = min

k∈discoveryi(t)
{|RSSIki (t)|+ c4|DK

i (t)|}

(18)

where RSSIki (t) is the RSSI of a beacon that the device
i receives from the event k at time t, and discoveryi(t) is
a set of events from which device i receives any beacons
at time t. If a device cannot receive a beacon from any
events, let the personal best evaluation value be a positive
infinity.

• Local best evaluation value (ELbest
i )

Based on Eqs.(16) and (17), a local best evaluation value
is defined:

ELbest
i (t) = min

j∈neighbor
{Ej(t) + c4|N j

i (t)|}, (19)

• Self-evaluation value (Ei)
Based on Eq. (6), a self-evaluation value is defined:

Ei(t) =


E

Pbest(K)
i (t)

if E
Pbest(K)
i (t) < min

j∈neighbori(t)
{EPbest(K)

j (t)}

ELbest
i + |RSSILbest

i (t)|
otherwise.

(20)
where RSSILbest

i (t) is the RSSI of the self-information
that the device i received from a device that is treated as
a local best device at time t.

The rice fading model is applied to the radio propagation
model, and the RSSI fluctuates instantaneously, and RSSI
includes random error. An event has an actuate capacity, which
is the amount necessary to complete the event’s caputure. The
device in the actuating mode decreases 1 actuation capacity
per 1 sec. When the actuated capacity of an event becomes 0,
it disappears from the simulation field.

In this simulation, we compared the five cases where the
number of leaders in a swarm ranges from 1 to 5.
B. Simulation result

The turnaround times for searching and actuating based on
the number of leaders in each swarm at K-factors 0dB, 3dB
and 6dB are respectively is shown in Figs.2, 3 and 4. The K-
factor indicates the ratio of the direct and indirect waves, and
if the value is large, the direct wave is a major element.

In the Figures, that is, in any K-factors and in any number
of events, the turnaround time decreases as the number of
devices increases, and it increase as the number of leaders in
each swarm increases. Therefore, these results show that the
optimal number of leaders in each swarm is a just one.

C. Discussion
In searching for and the actuating of unknown events, MSC

outperformed the independent method in which all the devices
behave selfishly, and outperformed the single swarm which
is also configured by one selfish leader and other unselfish
followers [5]. Additionally, the superiority of MSC to the
others increases as the number of devices increases, and also
the superiority increases as the number of events increases.

In the above MSC, we realized that the searching and actuat-
ing performances for unknown events with a swarm improves
by dynamically adjusting the number of swarms to searching
and actuating states. We assumed that the result is derived
from the moderate diversity of searching and actuating by
multiple swarms, and supposed that the moderate diversity by
the multiple leaders in each swarm also derives a effectiveness
in searching and actuating, especially since the diversity is
effective in searching with the instantaneous fluctuation of
RSSI. However, the elected multiple leaders lets multiple
devices be based on their personal best evaluation values for
an event, and the elected leaders are not necessarily those that
are the closest to an event. Therefore, while searching, the
leaders, which are not closest to an event, entire followers
to choose a detour way, and the multiple leaders weaken the
united behavior in a swarm.

The reason why a swarm with a single leader is superior
to one with multiple leaders is that the tolerance to the
instantaneous fluctuation in RSSI is not achieved by the
searching with multiple leaders; it is achieved by a sensing
beacon in diverse points where multiple devices are located.
Therefore, the multiple devices in the swarm sense a beacon
from an event at the diverse points where they are located,
and, in diverse sensing with the multiple devices, the electing
the closest device to an event can absorb the instantaneous
fluctuation in RSSI and let the swarm approach an event
through in a way has minimum distance.
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Fig. 2. Comparison of turnaround time based on the number of leaders in a swarm at K-factor 0dB
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Fig. 3. Comparison of turnaround time based on the number of leaders in a swarm at K-factor 3dB
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Fig. 4. Comparison of turnaround time based on the number of leaders in a swarm at K-factor 6dB

Summarizing the above, if the devices can identify each
event with their beacons, in dynamic multiple swarming in
MSC optimized mechanism, each swarm keeps on electing a
closest device to an event as a only one leader based on the
diverse sensing, where multiple devices in multi-points sense
an event’s beacon. Diverse sensing removes random error from
an event. Continuing to elect the closest single leader in the
diverse sensing always causes a swarm to approach an event
through in a minimum distance way without random error.

V. CONCLUSION

We addressed the optimizing mechanism of dynamic mul-
tiple swarming in MSC with the number of leaders in each
swarm. If such devices can identify each event with their
beacons, we showed that a single leader can entice a swarm
to approach an event in a minimum way in rice-fading
environment.
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