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Abstract—The extra quantities of wastewater entering the
pipes can cause backups that result in sanitary sewer overflows.
Urban underground infrastructure monitoring is important for
controlling the flow of extraneous water into the pipelines. By
combining the wireless underground communications and sensor
solutions, the urban underground IoT applications such as real
time wastewater and storm water overflow monitoring can be
developed. In this paper, the path loss analysis of wireless
underground communications in urban underground IoT for
wastewater monitoring has been presented. It has been shown
that the communication range of up to 4 kilometers can be
achieved from an underground transmitter when communicating
through 10cm thick asphalt layer.

I. INTRODUCTION

Internet of Underground Things (IOUT) has numerous
applications in the field of precision agriculture [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16] [17]. Another important application is in the area of
border monitoring, where this technology is being employed
for border enforcement and to curtail infiltration [18], [19].
Moreover, IOUT is also being utilized for landslide and
pipeline monitoring [4], [20], [21]. IOUT provides seamless
access of information collected from agricultural fields through
the Internet. IOUT include in situ soil sensing capabilities
(e.g., soil moisture, temperature, salinity), but also provide
the ability to communicate through plants and soil, and real-
time information about the environment (e.g., wind, rain, solar)
[22]. When interconnected with existing machinery on the field
(seeders, irrigation systems, combines), IOUT enable complete
autonomy on the field, and lead to development of enhanced
food production applications [23]. At agricultural farm level,
IOUTs are being used to provide valuable information to the
farmers.

Urban areas have public infrastructure worth billions of dol-
lars located underground. City governments spend significant
budget annually to support this underground infrastructure.
The underground IoT solutions are rare due to challenges
in connectivity and needs for extensive cabling to leverage
over-the-air communication solutions, which increases costs.
By combining wireless underground technology and sensor
solutions [24], [23], many transformative urban underground
IoT application such as real time flow monitoring, intrusion
and infiltration (I&I) isolation and smart manhole lids can be
developed.

The city waste water bodies are responsible for collecting
and treating wastewater at wastewater recovery facilities by
processing many million gallons a day. Cities have a strong
need to monitor the quantity and quality of wastewater entering
the collection system and reaching these recovery facilities.
Extra quantities of water entering the pipes can cause backups
that result in sanitary sewer overflows. Eliminating I&I is
important for controlling the flow of extraneous water into the
pipeline. However, currently most cities do not have access to
affordable underground sensor and connectivity technologies
designed to detect problems in time to take preventive action.
In this paper, we present the path loss analysis of wireless un-
derground communications using urban underground IoT for
wastewater monitoring. The architecture of urban underground
IoT for wastewater monitoring is shown in Fig. 1.

The wastewater flow monitoring application can utilize
wireless underground communication technology [25], which
allows IoT radios to be buried underground [3]. Underground
pipe monitoring sensors, connected to wireless underground
software defined radios, can wirelessly connect to the roadside
urban infrastructure at the nearest traffic light pole. This wire-
less underground technology has been shown to be successful
in agricultural fields for several years with effective commu-
nication ranges of 100-200m [23]. We present a theoretical
path loss analysis for wireless underground communication
through asphalt to design long-range wireless communication
radios, which will allow underground radios to be deployed
sufficiently deep to keep cabling to the underground pipes at a
minimum while maintaining connectivity [8], [26]. Providing
this information to mobile devices will enable large-scale
dissemination of timely alerts during emergencies. This ap-
plication can also drive realistic wireless traffic for evaluating
solutions for wireless underground networks.

This rest of the paper is organized as follows: the path
loss model for stratified media to air communications has
been presented in Section II. In this section, attenuation in
the stratified medium and dispersion of sub-grade of soil
has been described. In Section III, the model evaluations are
performed using different parameters. The paper is concluded
in Section IV.
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Fig. 1: The architecture of urban underground IoT for wastewater monitoring.

II. PATH LOSS MODEL FOR STRATIFIED MEDIA TO AIR
COMMUNICATIONS

In this section we present the attenuation in the stratified
medium and dispersion of sub-grade of soil.

A. Attenuation in the Stratified Medium

The layered structure of the underground medium is shown
in Fig. 2. The unique characteristics of signal propagation in
stratified medium require derivation of the path loss consider-
ing the properties of different layers involved in communica-
tion [27].

We consider propagation loss at two levels: 1) free space
path loss, 2) loss through stratified layers.

Free Space Path Loss: From Friis equation [28], the
received signal strength in free space at a distance r from
the transmitter is expressed in logarithmic form as:

Pr = Pt +Gr +Gt − Lfs , (1)

where Pt is the transmit power, Gr and Gt are the gains of
the receiver and transmitter antennas, and Lfs is the path loss
in free space in dB, which is given by

Lfs = 32.4 + 20log(d) + 20log(f) . (2)

where d is the distance between the transmitter and the receiver
in meters, and f is the operation frequency in MHz.

Propagation Loss in the Layered Medium: For the
propagation through layered medium, loss through medium
should account for the effect of the properties of different

Fig. 2: The layered structure of the underground medium.

layers involved in communication. As a result, the received
signal can be rewritten as [29]:

Pr = Pt +Gr +Gt − Lm , (3)

where Lm = Lfs + Ll, and Ll stands for the additional
path loss caused by the propagation of EM waves through
the stratified medium, which is calculated by considering the
following differences of EM wave propagation in layered
medium as compared to that of free space. The additional
path loss, Ll, in stratified medium is, hence, composed of loss
of the total number of layers:

Ll =
N−1∑
n=0

Ln, (4)

where Ln is the attenuation loss in the nth layer for each of
the N layers.

Propagation loss in the Ln, depends on the complex prop-
agation constant of the EM wave in that layer, which is given
as γ = α+ jβ with

α = ω

√√√√µε′

2

[√
1 + (

ε′′

ε′
)2 − 1

]
, (5)

β = ω

√√√√µε′

2

[√
1 + (

ε′′

ε′
)2 + 1

]
, (6)

where ω = 2πf is the angular frequency, µ is the magnetic
permeability, and ε′ and ε′′ are the real and imaginary parts
of the dielectric constant as given in (9), respectively. Conse-
quently, the path loss, Ln, in for a particular layer is found as
[30]:

Ln[dB] = 20.γ.d. log 10(e) (7)

where e = 2.71828, and d is thickness of the nth layer.
It can be seen that the propagation loss depends on the

complex propagation constant of the EM wave in medium,
layer thickness d, operating frequency, f , and other properties
of the medium. Next, we consider the dispersion of next layer
involved in the sewer overflow monitoring system.

B. Dispersion of Sub-grade of Soil

Using Peplinski’s principle [31], the dielectric properties of
soil in the 0.3-1.3 GHz band can be calculated as follows:

ε = ε′ − jε′′ , (8)

ε′ = 1.15[1 +
ρb
ρs

(εα
′

s ) +mβ′

v ε
′α′

fw −mv]
1/α′

−0.68, ε′′ = [mβ′′

v ε′′α
′

fw ]1/α
′
, (9)

respectively, where ε is the relative complex dielectric constant
of the soil-water mixture, mv is the water volume fraction (or
volumetric moisture content) of the mixture, ρb is the bulk
density in grams per cubic centimeter, ρs = 2.66g/cm3 is
the specific density of the solid soil particles, α′ = 0.65 is an
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Fig. 3: The propagation loss in the asphalt medium with change in layer
thickness. TABLE I: Model evaluation parameters.

Parameter Value
Pt 20 dBm
Soil Layer Thickness 20 cm
Asphalt Layer Thickness 10 cm
Frequency 433 MHz
Noise Floor -90 dBm
Soil Mositure 5% by Volume
Asphalt Temprature 300 K / 80.33 F/ 26 C

empirically determined constant, and β′ and β′′ are empirically
determined constants, dependent on soil-type and given by

β′ = 1.2748− 0.519S − 0.152C , (10)
β′′ = 1.33797− 0.603S − 0.166C , (11)

where S and C represent the mass fractions of sand and
clay, respectively. The quantities ε′fw and ε′′fw are the real and
imaginary parts of the relative dielectric constant of free water.

III. MODEL EVALUATION

In this section, we present the path loss analysis. The
model parameters considered for this evaluation are shown
in Table I. The soil and asphalt layer thickness is 20 cm
and 10 cm, respectively, with soil moisture level of 5%. The
operation frequency of 433 MHz is used with transmission
power of 20 dBm. In Fig. 3, the propagation loss in the asphalt
medium with change in layer thickness has been shown. It
can be observed that with layer thickness of less than 1m, the
propagation loss is less than 5dB. However, it increases with
increase in layer thickness. It increases to 15dB for the 4m
thick asphalt layer.

The path loss with change in distance is shown in Fig. 4.
It can be observed that for communication distances up to
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Fig. 4: The path loss with change in distance.
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Fig. 5: The received signal strength indicator with distance.
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Fig. 6: The propagation loss in the soil medium with change in layer thickness.

4km, the path less is less than 100dB. It increases to 107dB
for a distance of 10km. The received signal strength indicator
(RSSI) with distance is shown in Fig. 5. It can be observed that
the RSSI decreases with distance. This decrease is abrupt for
distances less than 2km. Afterwards, it decreases gradually. At
communication distance of 4km, the -80dBm RSSI indicates
that underground nodes in urban underground infrastructure
monitoring IoT can effectively communicate with urban road-
side wireless communication infrastructure.

In Fig. 6, the propagation loss in the soil medium with
change in layer thickness has been shown. It can be observed
that with layer thickness of less than 2m, the propagation
loss is less than 37dB. However, it increases with increase
in thickness. It increases to 57dB for the 4m thick soil layer.
Moreover, it can also be observed that soil medium has higher
loss as compared to the asphalt medium. This is caused by the
the higher permittivity of the soil as compared to the asphalt.
The higher water holding capacity of the soil in comparison
to asphalt medium leads to the higher permittivity of soil.

The effect of temperature change on propagation loss in
asphalt is shown in Fig. 7. It can be observed that with change
in asphalt temperature from 300K to 360K, the path loss
increases to 3.6dB. Therefore, the wireless communication
system in urban underground infrastructure monitoring IoT
should be design by considering the temperature change of
the asphalt medium in different weather conditions.

IV. CONCLUSIONS

In this paper, the path loss analysis of wireless underground
communications in urban underground IoT for wastewater
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Fig. 7: The effect of temperature change on propagation loss in asphalt.

monitoring has been presented. It has been shown that by
combining wireless underground technology and sensor solu-
tions, many transformative urban underground IoT application
such as real time flow monitoring, intrusion and infiltration
(I&I) isolation and smart manhole lids can be developed.
The path loss model evaluations have been done in different
communications media under different layers thickness levels.
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